Have a question? Connect with the community at the TensorFlow Forum

# tensorflow:: ops:: GatherNd

 #include <array_ops.h> 

Gather slices from  params  into a Tensor with shape specified by  indices  .

## Summary

 indices  is a K-dimensional integer tensor, best thought of as a (K-1)-dimensional tensor of indices into  params  , where each element defines a slice of  params  :

output[\$$i_0, ..., i_{K-2}\$$] = params[indices[\$$i_0, ..., i_{K-2}\$$]]


Whereas in  tf.gather   indices  defines slices into the  axis  dimension of  params  , in  tf.gather_nd  ,  indices  defines slices into the first  N  dimensions of  params  , where  N = indices.shape[-1]  .

The last dimension of  indices  can be at most the rank of  params  :

indices.shape[-1] <= params.rank


The last dimension of  indices  corresponds to elements (if  indices.shape[-1] == params.rank  ) or slices (if  indices.shape[-1] < params.rank  ) along dimension  indices.shape[-1]  of  params  . The output tensor has shape

indices.shape[:-1] + params.shape[indices.shape[-1]:]


Note that on CPU, if an out of bound index is found, an error is returned. On GPU, if an out of bound index is found, a 0 is stored in the corresponding output value.

Some examples below.

Simple indexing into a matrix:

    indices = [[0, 0], [1, 1]]
params = [['a', 'b'], ['c', 'd']]
output = ['a', 'd']


Slice indexing into a matrix:

    indices = [[1], [0]]
params = [['a', 'b'], ['c', 'd']]
output = [['c', 'd'], ['a', 'b']]


Indexing into a 3-tensor:

    indices = [[1]]
params = [[['a0', 'b0'], ['c0', 'd0']],
[['a1', 'b1'], ['c1', 'd1']]]
output = [[['a1', 'b1'], ['c1', 'd1']]]

    indices = [[0, 1], [1, 0]]
params = [[['a0', 'b0'], ['c0', 'd0']],
[['a1', 'b1'], ['c1', 'd1']]]
output = [['c0', 'd0'], ['a1', 'b1']]

    indices = [[0, 0, 1], [1, 0, 1]]
params = [[['a0', 'b0'], ['c0', 'd0']],
[['a1', 'b1'], ['c1', 'd1']]]
output = ['b0', 'b1']


Batched indexing into a matrix:

    indices = [[[0, 0]], [[0, 1]]]
params = [['a', 'b'], ['c', 'd']]
output = [['a'], ['b']]


Batched slice indexing into a matrix:

    indices = [[[1]], [[0]]]
params = [['a', 'b'], ['c', 'd']]
output = [[['c', 'd']], [['a', 'b']]]


Batched indexing into a 3-tensor:

    indices = [[[1]], [[0]]]
params = [[['a0', 'b0'], ['c0', 'd0']],
[['a1', 'b1'], ['c1', 'd1']]]
output = [[[['a1', 'b1'], ['c1', 'd1']]],
[[['a0', 'b0'], ['c0', 'd0']]]]

    indices = [[[0, 1], [1, 0]], [[0, 0], [1, 1]]]
params = [[['a0', 'b0'], ['c0', 'd0']],
[['a1', 'b1'], ['c1', 'd1']]]
output = [[['c0', 'd0'], ['a1', 'b1']],
[['a0', 'b0'], ['c1', 'd1']]]

    indices = [[[0, 0, 1], [1, 0, 1]], [[0, 1, 1], [1, 1, 0]]]
params = [[['a0', 'b0'], ['c0', 'd0']],
[['a1', 'b1'], ['c1', 'd1']]]
output = [['b0', 'b1'], ['d0', 'c1']]


See also  tf.gather  and  tf.batch_gather  .

Args:

• scope: A Scope object
• params: The tensor from which to gather values.
• indices: Index tensor.

Returns:

•  Output  : Values from  params  gathered from indices given by  indices  , with shape  indices.shape[:-1] + params.shape[indices.shape[-1]:]  .

### Constructors and Destructors

 GatherNd (const :: tensorflow::Scope & scope, :: tensorflow::Input params, :: tensorflow::Input indices) 

### Public attributes

 operation 
 Operation 
 output 
 :: tensorflow::Output 

### Public functions

 node () const 
 ::tensorflow::Node * 
 operator::tensorflow::Input () const 
 
 operator::tensorflow::Output () const 
 

## Public attributes

### operation

Operation operation

### output

::tensorflow::Output output

## Public functions

### GatherNd

 GatherNd(
const ::tensorflow::Scope & scope,
::tensorflow::Input params,
::tensorflow::Input indices
)

### node

::tensorflow::Node * node() const

### operator::tensorflow::Input

 operator::tensorflow::Input() const

### operator::tensorflow::Output

 operator::tensorflow::Output() const