एडाग्रेड योजना के अनुसार '*var' को अपडेट करें।
Accum += ग्रेड * ग्रेड var -= lr * ग्रेड * (1 / sqrt(accum))
नेस्टेड क्लासेस
कक्षा | AdagradV2.विकल्प लागू करें | ApplyAdagradV2 के लिए वैकल्पिक विशेषताएँ |
सार्वजनिक तरीके
आउटपुट <T> | आउटपुट के रूप में () टेंसर का प्रतीकात्मक हैंडल लौटाता है। |
स्थिर <T> ApplyAdagradV2 <T> | |
आउटपुट <T> | बाहर () "var" के समान। |
स्थिर ApplyAdagradV2.Options | अपडेटस्लॉट्स (बूलियन अपडेटस्लॉट्स) |
स्थिर ApplyAdagradV2.Options | यूज़लॉकिंग (बूलियन यूज़लॉकिंग) |
विरासत में मिली विधियाँ
सार्वजनिक तरीके
सार्वजनिक आउटपुट <T> asOutput ()
टेंसर का प्रतीकात्मक हैंडल लौटाता है।
TensorFlow संचालन के इनपुट किसी अन्य TensorFlow ऑपरेशन के आउटपुट हैं। इस पद्धति का उपयोग एक प्रतीकात्मक हैंडल प्राप्त करने के लिए किया जाता है जो इनपुट की गणना का प्रतिनिधित्व करता है।
सार्वजनिक स्थैतिक ApplyAdagradV2 <T> बनाएं ( स्कोप स्कोप, ऑपरेंड <T> var, ऑपरेंड <T> संचित, ऑपरेंड <T> lr, ऑपरेंड <T> एप्सिलॉन, ऑपरेंड <T> ग्रेड, विकल्प... विकल्प)
एक नए ApplyAdagradV2 ऑपरेशन को लपेटकर एक क्लास बनाने की फ़ैक्टरी विधि।
पैरामीटर
दायरा | वर्तमान दायरा |
---|---|
वर | एक वेरिएबल() से होना चाहिए। |
जमा | एक वेरिएबल() से होना चाहिए। |
एलआर | मापन कारक। एक अदिश राशि होनी चाहिए. |
एप्सिलॉन | निरंतर कारक. एक अदिश राशि होनी चाहिए. |
ग्रैड | ढाल. |
विकल्प | वैकल्पिक गुण मान रखता है |
रिटर्न
- ApplyAdagradV2 का एक नया उदाहरण
सार्वजनिक स्थैतिक ApplyAdagradV2.ऑप्शंस यूज़लॉकिंग (बूलियन यूज़लॉकिंग)
पैरामीटर
लॉकिंग का उपयोग करें | यदि `सही` है, तो var और Accum Tensors का अद्यतनीकरण एक लॉक द्वारा संरक्षित किया जाएगा; अन्यथा व्यवहार अपरिभाषित है, लेकिन कम विवाद प्रदर्शित कर सकता है। |
---|