Apply to speak at TensorFlow World. Deadline April 23rd. Propose talk

tf.contrib.saved_model.load_keras_model

tf.contrib.saved_model.load_keras_model(saved_model_path)

Defined in tensorflow/contrib/saved_model/python/saved_model/keras_saved_model.py.

Loads a keras.Model from SavedModel.

load_model reinstantiates model state by: 1) loading model topology from json (this will eventually come from metagraph). 2) loading model weights from checkpoint.

Example:

import tensorflow as tf

# Create a tf.keras model.
model = tf.keras.Sequential()
model.add(tf.keras.layers.Dense(1, input_shape=[10]))
model.summary()

# Save the tf.keras model in the SavedModel format.
saved_to_path = tf.contrib.saved_model.save_keras_model(
      model, '/tmp/my_simple_tf_keras_saved_model')

# Load the saved keras model back.
model_prime = tf.contrib.saved_model.load_keras_model(saved_to_path)
model_prime.summary()

Args:

  • saved_model_path: a string specifying the path to an existing SavedModel.

Returns:

a keras.Model instance.