Attend the Women in ML Symposium on December 7 Register now

woz_dialogue

References:

en

Use the following command to load this dataset in TFDS:

ds = tfds.load('huggingface:woz_dialogue/en')
  • Description:
Wizard-of-Oz (WOZ) is a dataset for training task-oriented dialogue systems. The dataset is designed around the task of finding a restaurant in the Cambridge, UK area. There are three informable slots (food, pricerange,area) that users can use to constrain the search and six requestable slots (address, phone, postcode plus the three informable slots) that the user can ask a value for once a restaurant has been offered.
  • License: No known license
  • Version: 1.0.0
  • Splits:
Split Examples
'test' 400
'train' 600
'validation' 200
  • Features:
{
    "dialogue_idx": {
        "dtype": "int32",
        "id": null,
        "_type": "Value"
    },
    "dialogue": [
        {
            "turn_label": {
                "feature": {
                    "feature": {
                        "dtype": "string",
                        "id": null,
                        "_type": "Value"
                    },
                    "length": -1,
                    "id": null,
                    "_type": "Sequence"
                },
                "length": -1,
                "id": null,
                "_type": "Sequence"
            },
            "asr": {
                "feature": {
                    "feature": {
                        "dtype": "string",
                        "id": null,
                        "_type": "Value"
                    },
                    "length": -1,
                    "id": null,
                    "_type": "Sequence"
                },
                "length": -1,
                "id": null,
                "_type": "Sequence"
            },
            "system_transcript": {
                "dtype": "string",
                "id": null,
                "_type": "Value"
            },
            "turn_idx": {
                "dtype": "int32",
                "id": null,
                "_type": "Value"
            },
            "belief_state": [
                {
                    "slots": {
                        "feature": {
                            "feature": {
                                "dtype": "string",
                                "id": null,
                                "_type": "Value"
                            },
                            "length": -1,
                            "id": null,
                            "_type": "Sequence"
                        },
                        "length": -1,
                        "id": null,
                        "_type": "Sequence"
                    },
                    "act": {
                        "dtype": "string",
                        "id": null,
                        "_type": "Value"
                    }
                }
            ],
            "transcript": {
                "dtype": "string",
                "id": null,
                "_type": "Value"
            },
            "system_acts": {
                "feature": {
                    "feature": {
                        "dtype": "string",
                        "id": null,
                        "_type": "Value"
                    },
                    "length": -1,
                    "id": null,
                    "_type": "Sequence"
                },
                "length": -1,
                "id": null,
                "_type": "Sequence"
            }
        }
    ]
}

de

Use the following command to load this dataset in TFDS:

ds = tfds.load('huggingface:woz_dialogue/de')
  • Description:
Wizard-of-Oz (WOZ) is a dataset for training task-oriented dialogue systems. The dataset is designed around the task of finding a restaurant in the Cambridge, UK area. There are three informable slots (food, pricerange,area) that users can use to constrain the search and six requestable slots (address, phone, postcode plus the three informable slots) that the user can ask a value for once a restaurant has been offered.
  • License: No known license
  • Version: 1.0.0
  • Splits:
Split Examples
'test' 400
'train' 600
'validation' 200
  • Features:
{
    "dialogue_idx": {
        "dtype": "int32",
        "id": null,
        "_type": "Value"
    },
    "dialogue": [
        {
            "turn_label": {
                "feature": {
                    "feature": {
                        "dtype": "string",
                        "id": null,
                        "_type": "Value"
                    },
                    "length": -1,
                    "id": null,
                    "_type": "Sequence"
                },
                "length": -1,
                "id": null,
                "_type": "Sequence"
            },
            "asr": {
                "feature": {
                    "feature": {
                        "dtype": "string",
                        "id": null,
                        "_type": "Value"
                    },
                    "length": -1,
                    "id": null,
                    "_type": "Sequence"
                },
                "length": -1,
                "id": null,
                "_type": "Sequence"
            },
            "system_transcript": {
                "dtype": "string",
                "id": null,
                "_type": "Value"
            },
            "turn_idx": {
                "dtype": "int32",
                "id": null,
                "_type": "Value"
            },
            "belief_state": [
                {
                    "slots": {
                        "feature": {
                            "feature": {
                                "dtype": "string",
                                "id": null,
                                "_type": "Value"
                            },
                            "length": -1,
                            "id": null,
                            "_type": "Sequence"
                        },
                        "length": -1,
                        "id": null,
                        "_type": "Sequence"
                    },
                    "act": {
                        "dtype": "string",
                        "id": null,
                        "_type": "Value"
                    }
                }
            ],
            "transcript": {
                "dtype": "string",
                "id": null,
                "_type": "Value"
            },
            "system_acts": {
                "feature": {
                    "feature": {
                        "dtype": "string",
                        "id": null,
                        "_type": "Value"
                    },
                    "length": -1,
                    "id": null,
                    "_type": "Sequence"
                },
                "length": -1,
                "id": null,
                "_type": "Sequence"
            }
        }
    ]
}

de_en

Use the following command to load this dataset in TFDS:

ds = tfds.load('huggingface:woz_dialogue/de_en')
  • Description:
Wizard-of-Oz (WOZ) is a dataset for training task-oriented dialogue systems. The dataset is designed around the task of finding a restaurant in the Cambridge, UK area. There are three informable slots (food, pricerange,area) that users can use to constrain the search and six requestable slots (address, phone, postcode plus the three informable slots) that the user can ask a value for once a restaurant has been offered.
  • License: No known license
  • Version: 1.0.0
  • Splits:
Split Examples
'test' 400
'train' 600
'validation' 200
  • Features:
{
    "dialogue_idx": {
        "dtype": "int32",
        "id": null,
        "_type": "Value"
    },
    "dialogue": [
        {
            "turn_label": {
                "feature": {
                    "feature": {
                        "dtype": "string",
                        "id": null,
                        "_type": "Value"
                    },
                    "length": -1,
                    "id": null,
                    "_type": "Sequence"
                },
                "length": -1,
                "id": null,
                "_type": "Sequence"
            },
            "asr": {
                "feature": {
                    "feature": {
                        "dtype": "string",
                        "id": null,
                        "_type": "Value"
                    },
                    "length": -1,
                    "id": null,
                    "_type": "Sequence"
                },
                "length": -1,
                "id": null,
                "_type": "Sequence"
            },
            "system_transcript": {
                "dtype": "string",
                "id": null,
                "_type": "Value"
            },
            "turn_idx": {
                "dtype": "int32",
                "id": null,
                "_type": "Value"
            },
            "belief_state": [
                {
                    "slots": {
                        "feature": {
                            "feature": {
                                "dtype": "string",
                                "id": null,
                                "_type": "Value"
                            },
                            "length": -1,
                            "id": null,
                            "_type": "Sequence"
                        },
                        "length": -1,
                        "id": null,
                        "_type": "Sequence"
                    },
                    "act": {
                        "dtype": "string",
                        "id": null,
                        "_type": "Value"
                    }
                }
            ],
            "transcript": {
                "dtype": "string",
                "id": null,
                "_type": "Value"
            },
            "system_acts": {
                "feature": {
                    "feature": {
                        "dtype": "string",
                        "id": null,
                        "_type": "Value"
                    },
                    "length": -1,
                    "id": null,
                    "_type": "Sequence"
                },
                "length": -1,
                "id": null,
                "_type": "Sequence"
            }
        }
    ]
}

it

Use the following command to load this dataset in TFDS:

ds = tfds.load('huggingface:woz_dialogue/it')
  • Description:
Wizard-of-Oz (WOZ) is a dataset for training task-oriented dialogue systems. The dataset is designed around the task of finding a restaurant in the Cambridge, UK area. There are three informable slots (food, pricerange,area) that users can use to constrain the search and six requestable slots (address, phone, postcode plus the three informable slots) that the user can ask a value for once a restaurant has been offered.
  • License: No known license
  • Version: 1.0.0
  • Splits:
Split Examples
'test' 400
'train' 600
'validation' 200
  • Features:
{
    "dialogue_idx": {
        "dtype": "int32",
        "id": null,
        "_type": "Value"
    },
    "dialogue": [
        {
            "turn_label": {
                "feature": {
                    "feature": {
                        "dtype": "string",
                        "id": null,
                        "_type": "Value"
                    },
                    "length": -1,
                    "id": null,
                    "_type": "Sequence"
                },
                "length": -1,
                "id": null,
                "_type": "Sequence"
            },
            "asr": {
                "feature": {
                    "feature": {
                        "dtype": "string",
                        "id": null,
                        "_type": "Value"
                    },
                    "length": -1,
                    "id": null,
                    "_type": "Sequence"
                },
                "length": -1,
                "id": null,
                "_type": "Sequence"
            },
            "system_transcript": {
                "dtype": "string",
                "id": null,
                "_type": "Value"
            },
            "turn_idx": {
                "dtype": "int32",
                "id": null,
                "_type": "Value"
            },
            "belief_state": [
                {
                    "slots": {
                        "feature": {
                            "feature": {
                                "dtype": "string",
                                "id": null,
                                "_type": "Value"
                            },
                            "length": -1,
                            "id": null,
                            "_type": "Sequence"
                        },
                        "length": -1,
                        "id": null,
                        "_type": "Sequence"
                    },
                    "act": {
                        "dtype": "string",
                        "id": null,
                        "_type": "Value"
                    }
                }
            ],
            "transcript": {
                "dtype": "string",
                "id": null,
                "_type": "Value"
            },
            "system_acts": {
                "feature": {
                    "feature": {
                        "dtype": "string",
                        "id": null,
                        "_type": "Value"
                    },
                    "length": -1,
                    "id": null,
                    "_type": "Sequence"
                },
                "length": -1,
                "id": null,
                "_type": "Sequence"
            }
        }
    ]
}

it_en

Use the following command to load this dataset in TFDS:

ds = tfds.load('huggingface:woz_dialogue/it_en')
  • Description:
Wizard-of-Oz (WOZ) is a dataset for training task-oriented dialogue systems. The dataset is designed around the task of finding a restaurant in the Cambridge, UK area. There are three informable slots (food, pricerange,area) that users can use to constrain the search and six requestable slots (address, phone, postcode plus the three informable slots) that the user can ask a value for once a restaurant has been offered.
  • License: No known license
  • Version: 1.0.0
  • Splits:
Split Examples
'test' 400
'train' 600
'validation' 200
  • Features:
{
    "dialogue_idx": {
        "dtype": "int32",
        "id": null,
        "_type": "Value"
    },
    "dialogue": [
        {
            "turn_label": {
                "feature": {
                    "feature": {
                        "dtype": "string",
                        "id": null,
                        "_type": "Value"
                    },
                    "length": -1,
                    "id": null,
                    "_type": "Sequence"
                },
                "length": -1,
                "id": null,
                "_type": "Sequence"
            },
            "asr": {
                "feature": {
                    "feature": {
                        "dtype": "string",
                        "id": null,
                        "_type": "Value"
                    },
                    "length": -1,
                    "id": null,
                    "_type": "Sequence"
                },
                "length": -1,
                "id": null,
                "_type": "Sequence"
            },
            "system_transcript": {
                "dtype": "string",
                "id": null,
                "_type": "Value"
            },
            "turn_idx": {
                "dtype": "int32",
                "id": null,
                "_type": "Value"
            },
            "belief_state": [
                {
                    "slots": {
                        "feature": {
                            "feature": {
                                "dtype": "string",
                                "id": null,
                                "_type": "Value"
                            },
                            "length": -1,
                            "id": null,
                            "_type": "Sequence"
                        },
                        "length": -1,
                        "id": null,
                        "_type": "Sequence"
                    },
                    "act": {
                        "dtype": "string",
                        "id": null,
                        "_type": "Value"
                    }
                }
            ],
            "transcript": {
                "dtype": "string",
                "id": null,
                "_type": "Value"
            },
            "system_acts": {
                "feature": {
                    "feature": {
                        "dtype": "string",
                        "id": null,
                        "_type": "Value"
                    },
                    "length": -1,
                    "id": null,
                    "_type": "Sequence"
                },
                "length": -1,
                "id": null,
                "_type": "Sequence"
            }
        }
    ]
}