Uses a TF2 SavedModel to construct a dense representation from text.
hub.text_embedding_column_v2(
key, module_path, output_key=None, trainable=False
)
Args |
key
|
A string or FeatureColumn identifying the input string data.
|
module_path
|
A string path to the module. Can be a path to local filesystem
or a hub.tensorflow.google.cn handle.
|
output_key
|
Name of the output item to return if the layer returns a dict.
If the result is not a single value and an output_key is not specified,
the feature column cannot infer the right output to use.
|
trainable
|
Whether or not the Model is trainable. False by default, meaning
the pre-trained weights are frozen. This is different from the ordinary
tf.feature_column.embedding_column(), but that one is intended for
training from scratch.
|
Returns |
DenseColumn that converts from text input.
|