Google I/O にご注目いただきありがとうございます。すべてのセッションをオンデマンドで表示オンデマンドで見る

TensorFlow は、機械学習向けに開発されたエンドツーエンドのオープンソース プラットフォームです

TensorFlow を利用すると、エキスパートはもちろん初心者でも機械学習モデルを簡単に作成できます。まずは以下の各セクションをご覧ください。

チュートリアル

包括的で完全な例を挙げながら TensorFlow の使い方を説明するチュートリアルです。

ガイドを見る

TensorFlow の概念およびコンポーネントについて説明するガイドです。

初心者向け

The best place to start is with the user-friendly Sequential API. You can create models by plugging together building blocks. Run the “Hello World” example below, then visit the tutorials to learn more.

To learn ML, check out our education page. Begin with curated curriculums to improve your skills in foundational ML areas.

import tensorflow as tf
mnist = tf.keras.datasets.mnist

(x_train, y_train),(x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0

model = tf.keras.models.Sequential([
  tf.keras.layers.Flatten(input_shape=(28, 28)),
  tf.keras.layers.Dense(128, activation='relu'),
  tf.keras.layers.Dropout(0.2),
  tf.keras.layers.Dense(10, activation='softmax')
])

model.compile(optimizer='adam',
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])

model.fit(x_train, y_train, epochs=5)
model.evaluate(x_test, y_test)

エキスパート向け

The Subclassing API provides a define-by-run interface for advanced research. Create a class for your model, then write the forward pass imperatively. Easily author custom layers, activations, and training loops. Run the “Hello World” example below, then visit the tutorials to learn more.

class MyModel(tf.keras.Model):
  def __init__(self):
    super(MyModel, self).__init__()
    self.conv1 = Conv2D(32, 3, activation='relu')
    self.flatten = Flatten()
    self.d1 = Dense(128, activation='relu')
    self.d2 = Dense(10, activation='softmax')

  def call(self, x):
    x = self.conv1(x)
    x = self.flatten(x)
    x = self.d1(x)
    return self.d2(x)
model = MyModel()

with tf.GradientTape() as tape:
  logits = model(images)
  loss_value = loss(logits, labels)
grads = tape.gradient(loss_value, model.trainable_variables)
optimizer.apply_gradients(zip(grads, model.trainable_variables))

よくある問題への解決策

プロジェクトの参考になるステップバイステップ チュートリアルをご覧ください。

初心者向け
はじめてのニューラル ネットワーク

スニーカーやシャツなど、身に着けるものの画像を分類するニューラル ネットワークをトレーニングします。短時間で終えられるこのチュートリアルを通じて、TensorFlow プログラムの全体像を大まかに把握することができます。

エキスパート向け
敵対的生成ネットワーク

Keras Subclassing API を使用して、手書き風の数字の画像を生成する敵対的生成ネットワークをトレーニングします。

エキスパート向け
アテンションを用いたニューラル機械翻訳

Keras Subclassing API を使用して、スペイン語から英語への翻訳を行う sequence-to-sequence モデルをトレーニングします。

ニュースとお知らせ

Check out our blog for additional updates, and subscribe to our TensorFlow newsletter to get the latest announcements sent directly to your inbox.