# tfp.edward2.NegativeBinomial

Create a random variable for NegativeBinomial.

See NegativeBinomial for more details.

RandomVariable.

#### Original Docstring for Distribution

Construct NegativeBinomial distributions.

`total_count` Positive floating-point `Tensor` with shape broadcastable to `[B1,..., Bb]` with `b >= 0` and the same dtype as `probs` or `logits`. Defines this as a batch of `N1 x ... x Nm` different Negative Binomial distributions. In practice, this represents the number of negative Bernoulli trials to stop at (the `total_count` of failures). Its components should be equal to integer values.
`logits` Floating-point `Tensor` with shape broadcastable to `[B1, ..., Bb]` where `b >= 0` indicates the number of batch dimensions. Each entry represents logits for the probability of success for independent Negative Binomial distributions and must be in the half-open interval `[-inf, inf)`. Only one of `logits` or `probs` should be specified.
`probs` Positive floating-point `Tensor` with shape broadcastable to `[B1, ..., Bb]` where `b >= 0` indicates the number of batch dimensions. Each entry represents the probability of success for independent Negative Binomial distributions and must be in the half-open interval `[0, 1)`. Only one of `logits` or `probs` should be specified.
`validate_args` Python `bool`, default `False`. When `True` distribution parameters are checked for validity despite possibly degrading runtime performance. When `False` invalid inputs may silently render incorrect outputs.
`allow_nan_stats` Python `bool`, default `True`. When `True`, statistics (e.g., mean, mode, variance) use the value "`NaN`" to indicate the result is undefined. When `False`, an exception is raised if one or more of the statistic's batch members are undefined.
`name` Python `str` name prefixed to Ops created by this class.