Missed TensorFlow World? Check out the recap. Learn more

tf.data.experimental.DistributeOptions

TensorFlow 2.0 version View source on GitHub

Class DistributeOptions

Represents options for distributed data processing.

Aliases:

  • Class tf.compat.v1.data.experimental.DistributeOptions
  • Class tf.compat.v2.data.experimental.DistributeOptions

You can set the distribution options of a dataset through the experimental_distribute property of tf.data.Options; the property is an instance of tf.data.experimental.DistributeOptions.

options = tf.data.Options()
options.experimental_distribute.auto_shard = False
dataset = dataset.with_options(options)

__init__

View source

__init__()

Properties

auto_shard

Whether the dataset should be automatically sharded when processedin a distributed fashion. This is applicable when using Keras with multi-worker/TPU distribution strategy, and by using strategy.experimental_distribute_dataset(). In other cases, this option does nothing. If None, defaults to True.

num_devices

The number of devices attached to this input pipeline. This will be automatically set by MultiDeviceIterator.

Methods

__eq__

View source

__eq__(other)

__ne__

View source

__ne__(other)