Help protect the Great Barrier Reef with TensorFlow on Kaggle

# tensorflow::ops::MatrixDiagPart

#include <array_ops.h>

Returns the batched diagonal part of a batched tensor.

## Summary

This operation returns a tensor with the diagonal part of the batched input. The diagonal part is computed as follows:

Assume input has k dimensions [I, J, K, ..., M, N], then the output is a tensor of rank k - 1 with dimensions [I, J, K, ..., min(M, N)] where:

diagonal[i, j, k, ..., n] = input[i, j, k, ..., n, n].

The input must be at least a matrix.

For example:

# 'input' is [[[1, 0, 0, 0]
[0, 2, 0, 0]
[0, 0, 3, 0]
[0, 0, 0, 4]],
[[5, 0, 0, 0]
[0, 6, 0, 0]
[0, 0, 7, 0]
[0, 0, 0, 8]]]

and input.shape = (2, 4, 4)

tf.matrix_diag_part(input) ==> [[1, 2, 3, 4], [5, 6, 7, 8]]

which has shape (2, 4)

Arguments:

• scope: A Scope object
• input: Rank k tensor where k >= 2.

Returns:

• Output: The extracted diagonal(s) having shape diagonal.shape = input.shape[:-2] + [min(input.shape[-2:])].

### Constructors and Destructors

MatrixDiagPart(const ::tensorflow::Scope & scope, ::tensorflow::Input input)

diagonal
operation

### Public functions

node() const
::tensorflow::Node *
operator::tensorflow::Input() const
operator::tensorflow::Output() const

## Public attributes

### diagonal

::tensorflow::Output diagonal

### operation

Operation operation

## Public functions

### MatrixDiagPart

MatrixDiagPart(
const ::tensorflow::Scope & scope,
::tensorflow::Input input
)

### node

::tensorflow::Node * node() const

### operator::tensorflow::Input

operator::tensorflow::Input() const

### operator::tensorflow::Output

operator::tensorflow::Output() const
[]
[]