Help protect the Great Barrier Reef with TensorFlow on Kaggle

# tensorflow::ops::SparseSegmentSumWithNumSegments

`#include <math_ops.h>`

Computes the sum along sparse segments of a tensor.

## Summary

Like `SparseSegmentSum`, but allows missing ids in `segment_ids`. If an id is misisng, the `output` tensor at that position will be zeroed.

Read the section on segmentation for an explanation of segments.

For example:

`c = tf.constant([[1,2,3,4], [-1,-2,-3,-4], [5,6,7,8]])`

```tf.sparse_segment_sum_with_num_segments(
c, tf.constant([0, 1]), tf.constant([0, 0]), num_segments=3)
# => [[0 0 0 0]
#     [0 0 0 0]
#     [0 0 0 0]]```

```tf.sparse_segment_sum_with_num_segments(c,
tf.constant([0, 1]),
tf.constant([0, 2],
num_segments=4))
# => [[ 1  2  3  4]
#     [ 0  0  0  0]
#     [-1 -2 -3 -4]
#     [ 0  0  0  0]]
```

Arguments:

• scope: A Scope object
• indices: A 1-D tensor. Has same rank as `segment_ids`.
• segment_ids: A 1-D tensor. Values should be sorted and can be repeated.
• num_segments: Should equal the number of distinct segment IDs.

Returns:

• `Output`: Has same shape as data, except for dimension 0 which has size `num_segments`.

### Constructors and Destructors

`SparseSegmentSumWithNumSegments(const ::tensorflow::Scope & scope, ::tensorflow::Input data, ::tensorflow::Input indices, ::tensorflow::Input segment_ids, ::tensorflow::Input num_segments)`

### Public attributes

`operation`
`Operation`
`output`
`::tensorflow::Output`

### Public functions

`node() const `
`::tensorflow::Node *`
`operator::tensorflow::Input() const `
``` ```
``` ```
`operator::tensorflow::Output() const `
``` ```
``` ```

## Public attributes

### operation

`Operation operation`

### output

`::tensorflow::Output output`

## Public functions

### SparseSegmentSumWithNumSegments

``` SparseSegmentSumWithNumSegments(
const ::tensorflow::Scope & scope,
::tensorflow::Input data,
::tensorflow::Input indices,
::tensorflow::Input segment_ids,
::tensorflow::Input num_segments
)```

### node

`::tensorflow::Node * node() const `

### operator::tensorflow::Input

` operator::tensorflow::Input() const `

### operator::tensorflow::Output

` operator::tensorflow::Output() const `
[]
[]