A tf.int64 scalar representing the number of bytes in
each record.
header_bytes
(Optional.) A tf.int64 scalar representing the number of
bytes to skip at the start of a file.
footer_bytes
(Optional.) A tf.int64 scalar representing the number of
bytes to ignore at the end of a file.
buffer_size
(Optional.) A tf.int64 scalar representing the number of
bytes to buffer when reading.
compression_type
(Optional.) A tf.string scalar evaluating to one of
"" (no compression), "ZLIB", or "GZIP".
num_parallel_reads
(Optional.) A tf.int64 scalar representing the
number of files to read in parallel. If greater than one, the records of
files read in parallel are outputted in an interleaved order. If your
input pipeline is I/O bottlenecked, consider setting this parameter to a
value greater than one to parallelize the I/O. If None, files will be
read sequentially.
Attributes
element_spec
The type specification of an element of this dataset.
output_classes
Returns the class of each component of an element of this dataset. (deprecated)
output_shapes
Returns the shape of each component of an element of this dataset. (deprecated)
output_types
Returns the type of each component of an element of this dataset. (deprecated)
Applies a transformation function to this dataset.
apply enables chaining of custom Dataset transformations, which are
represented as functions that take one Dataset argument and return a
transformed Dataset.
For example:
dataset = (dataset.map(lambda x: x ** 2)
.apply(group_by_window(key_func, reduce_func, window_size))
.map(lambda x: x ** 3))
Args
transformation_func
A function that takes one Dataset argument and
returns a Dataset.
Returns
Dataset
The Dataset returned by applying transformation_func to this
dataset.
Combines consecutive elements of this dataset into batches.
The components of the resulting element will have an additional outer
dimension, which will be batch_size (or N % batch_size for the last
element if batch_size does not divide the number of input elements N
evenly and drop_remainder is False). If your program depends on the
batches having the same outer dimension, you should set the drop_remainder
argument to True to prevent the smaller batch from being produced.
Args
batch_size
A tf.int64 scalar tf.Tensor, representing the number of
consecutive elements of this dataset to combine in a single batch.
drop_remainder
(Optional.) A tf.bool scalar tf.Tensor, representing
whether the last batch should be dropped in the case it has fewer than
batch_size elements; the default behavior is not to drop the smaller
batch.
A tf.string scalar tf.Tensor, representing the name of a
directory on the filesystem to use for caching elements in this Dataset.
If a filename is not provided, the dataset will be cached in memory.
Creates a Dataset by concatenating the given dataset with this dataset.
a = Dataset.range(1, 4) # ==> [ 1, 2, 3 ]
b = Dataset.range(4, 8) # ==> [ 4, 5, 6, 7 ]
# The input dataset and dataset to be concatenated should have the same
# nested structures and output types.
# c = Dataset.range(8, 14).batch(2) # ==> [ [8, 9], [10, 11], [12, 13] ]
# d = Dataset.from_tensor_slices([14.0, 15.0, 16.0])
# a.concatenate(c) and a.concatenate(d) would result in error.
a.concatenate(b) # ==> [ 1, 2, 3, 4, 5, 6, 7 ]
# NOTE: The following examples use `{ ... }` to represent the
# contents of a dataset.
a = { 1, 2, 3 }
b = { (7, 8), (9, 10) }
# The nested structure of the `datasets` argument determines the
# structure of elements in the resulting dataset.
a.enumerate(start=5)) == { (5, 1), (6, 2), (7, 3) }
b.enumerate() == { (0, (7, 8)), (1, (9, 10)) }
Args
start
A tf.int64 scalar tf.Tensor, representing the start value for
enumeration.
Filters this dataset according to predicate. (deprecated)
Args
predicate
A function mapping a nested structure of tensors (having shapes
and types defined by self.output_shapes and self.output_types) to a
scalar tf.bool tensor.
Returns
Dataset
The Dataset containing the elements of this dataset for which
predicate is True.
Maps map_func across this dataset and flattens the result.
Use flat_map if you want to make sure that the order of your dataset
stays the same. For example, to flatten a dataset of batches into a
dataset of their elements:
Creates a Dataset whose elements are generated by generator.
The generator argument must be a callable object that returns
an object that supports the iter() protocol (e.g. a generator function).
The elements generated by generator must be compatible with the given
output_types and (optional) output_shapes arguments.
For example:
import itertools
tf.compat.v1.enable_eager_execution()
def gen():
for i in itertools.count(1):
yield (i, [1] * i)
ds = tf.data.Dataset.from_generator(
gen, (tf.int64, tf.int64), (tf.TensorShape([]), tf.TensorShape([None])))
for value in ds.take(2):
print value
# (1, array([1]))
# (2, array([1, 1]))
Args
generator
A callable object that returns an object that supports the
iter() protocol. If args is not specified, generator must take no
arguments; otherwise it must take as many arguments as there are values
in args.
output_types
A nested structure of tf.DType objects corresponding to
each component of an element yielded by generator.
output_shapes
(Optional.) A nested structure of tf.TensorShape objects
corresponding to each component of an element yielded by generator.
args
(Optional.) A tuple of tf.Tensor objects that will be evaluated
and passed to generator as NumPy-array arguments.