Attend the Women in ML Symposium on December 7

# tensorflow::ops::ResourceApplyCenteredRMSProp

`#include <training_ops.h>`

Update '*var' according to the centered RMSProp algorithm.

## Summary

The centered RMSProp algorithm uses an estimate of the centered second moment (i.e., the variance) for normalization, as opposed to regular RMSProp, which uses the (uncentered) second moment. This often helps with training, but is slightly more expensive in terms of computation and memory.

Note that in dense implementation of this algorithm, mg, ms, and mom will update even if the grad is zero, but in this sparse implementation, mg, ms, and mom will not update in iterations during which the grad is zero.

Delta = learning_rate * gradient / sqrt(mean_square + epsilon - mean_grad ** 2)

mg <- rho * mg_{t-1} + (1-rho) * grad ms <- rho * ms_{t-1} + (1-rho) * grad * grad mom <- momentum * mom_{t-1} + lr * grad / sqrt(ms - mg * mg + epsilon) var <- var - mom

Arguments:

• scope: A Scope object
• var: Should be from a Variable().
• mg: Should be from a Variable().
• ms: Should be from a Variable().
• mom: Should be from a Variable().
• lr: Scaling factor. Must be a scalar.
• rho: Decay rate. Must be a scalar.
• epsilon: Ridge term. Must be a scalar.

Optional attributes (see `Attrs`):

• use_locking: If `True`, updating of the var, mg, ms, and mom tensors is protected by a lock; otherwise the behavior is undefined, but may exhibit less contention.

Returns:

• the created `Operation`

### Constructors and Destructors

`ResourceApplyCenteredRMSProp(const ::tensorflow::Scope & scope, ::tensorflow::Input var, ::tensorflow::Input mg, ::tensorflow::Input ms, ::tensorflow::Input mom, ::tensorflow::Input lr, ::tensorflow::Input rho, ::tensorflow::Input momentum, ::tensorflow::Input epsilon, ::tensorflow::Input grad)`
`ResourceApplyCenteredRMSProp(const ::tensorflow::Scope & scope, ::tensorflow::Input var, ::tensorflow::Input mg, ::tensorflow::Input ms, ::tensorflow::Input mom, ::tensorflow::Input lr, ::tensorflow::Input rho, ::tensorflow::Input momentum, ::tensorflow::Input epsilon, ::tensorflow::Input grad, const ResourceApplyCenteredRMSProp::Attrs & attrs)`

### Public attributes

`operation`
`Operation`

### Public functions

`operator::tensorflow::Operation() const `
``` ```
``` ```

### Public static functions

`UseLocking(bool x)`
`Attrs`

### Structs

tensorflow::ops::ResourceApplyCenteredRMSProp::Attrs

Optional attribute setters for ResourceApplyCenteredRMSProp.

## Public attributes

### operation

`Operation operation`

## Public functions

### ResourceApplyCenteredRMSProp

``` ResourceApplyCenteredRMSProp(
const ::tensorflow::Scope & scope,
::tensorflow::Input var,
::tensorflow::Input mg,
::tensorflow::Input ms,
::tensorflow::Input mom,
::tensorflow::Input lr,
::tensorflow::Input rho,
::tensorflow::Input momentum,
::tensorflow::Input epsilon,
)```

### ResourceApplyCenteredRMSProp

``` ResourceApplyCenteredRMSProp(
const ::tensorflow::Scope & scope,
::tensorflow::Input var,
::tensorflow::Input mg,
::tensorflow::Input ms,
::tensorflow::Input mom,
::tensorflow::Input lr,
::tensorflow::Input rho,
::tensorflow::Input momentum,
::tensorflow::Input epsilon,
const ResourceApplyCenteredRMSProp::Attrs & attrs
)```

### operator::tensorflow::Operation

` operator::tensorflow::Operation() const `

## Public static functions

### UseLocking

```Attrs UseLocking(
bool x
)```
[]
[]