View source on GitHub |
Checks whether the current thread has eager execution enabled.
tf.compat.v1.executing_eagerly()
Eager execution is typically enabled via
tf.compat.v1.enable_eager_execution
, but may also be enabled within the
context of a Python function via tf.contrib.eager.py_func.
When eager execution is enabled, returns True
in most cases. However,
this API might return False
in the following use cases.
- Executing inside
tf.function
, unless undertf.init_scope
ortf.config.run_functions_eagerly(True)
is previously called. - Executing inside a transformation function for
tf.dataset
. tf.compat.v1.disable_eager_execution()
is called.
tf.compat.v1.enable_eager_execution()
General case:
print(tf.executing_eagerly())
True
Inside tf.function
:
@tf.function
def fn():
with tf.init_scope():
print(tf.executing_eagerly())
print(tf.executing_eagerly())
fn()
True
False
Inside tf.function
after tf.config.run_functions_eagerly(True)
is called:
tf.config.run_functions_eagerly(True)
@tf.function
def fn():
with tf.init_scope():
print(tf.executing_eagerly())
print(tf.executing_eagerly())
fn()
True
True
tf.config.run_functions_eagerly(False)
Inside a transformation function for tf.dataset
:
def data_fn(x):
print(tf.executing_eagerly())
return x
dataset = tf.data.Dataset.range(100)
dataset = dataset.map(data_fn)
False
Returns | |
---|---|
True if the current thread has eager execution enabled.
|