Returns the min of x and y (i.e. x < y ? x : y) element-wise.
tf.compat.v1.math.minimum(
x: Annotated[Any, tf.raw_ops.Any
],
y: Annotated[Any, tf.raw_ops.Any
],
name=None
) -> Annotated[Any, tf.raw_ops.Any
]
Both inputs are number-type tensors (except complex). minimum
expects that
both tensors have the same dtype
.
Examples:
x = tf.constant([0., 0., 0., 0.])
y = tf.constant([-5., -2., 0., 3.])
tf.math.minimum(x, y)
<tf.Tensor: shape=(4,), dtype=float32, numpy=array([-5., -2., 0., 0.], dtype=float32)>
Note that minimum
supports broadcast semantics for x
and y
.
x = tf.constant([-5., 0., 0., 0.])
y = tf.constant([-3.])
tf.math.minimum(x, y)
<tf.Tensor: shape=(4,), dtype=float32, numpy=array([-5., -3., -3., -3.], dtype=float32)>
The reduction version of this elementwise operation is tf.math.reduce_min
Returns | |
---|---|
A Tensor . Has the same type as x .
|