tf.compat.v1.nn.rnn_cell.ResidualWrapper

RNNCell wrapper that ensures cell inputs are added to the outputs.

Inherits From: RNNCell, Layer, Layer, Module

cell An instance of RNNCell.
residual_fn (Optional) The function to map raw cell inputs and raw cell outputs to the actual cell outputs of the residual network. Defaults to calling nest.map_structure on (lambda i, o: i + o), inputs and outputs.
**kwargs dict of keyword arguments for base layer.

graph

output_size Integer or TensorShape: size of outputs produced by this cell.
scope_name

state_size size(s) of state(s) used by this cell.

It can be represented by an Integer, a TensorShape or a tuple of Integers or TensorShapes.

Methods

apply

View source

get_initial_state

View source

get_losses_for

View source

Retrieves losses relevant to a specific set of inputs.

Args
inputs Input tensor or list/tuple of input tensors.

Returns
List of loss tensors of the layer that depend on inputs.

get_updates_for

View source

Retrieves updates relevant to a specific set of inputs.

Args
inputs Input tensor or list/tuple of input tensors.

Returns
List of update ops of the layer that depend on inputs.

zero_state

View source

Return zero-filled state tensor(s).

Args
batch_size int, float, or unit Tensor representing the batch size.
dtype the data type to use for the state.

Returns
If state_size is an int or TensorShape, then the return value is a N-D tensor of shape [batch_size, state_size] filled with zeros.

If state_size is a nested list or tuple, then the return value is a nested list or tuple (of the same structure) of 2-D tensors with the shapes [batch_size, s] for each s in state_size.