A function which should obey the following signature:
Args: can only have following four arguments in any order:
predictions: Predictions Tensor or dict of Tensor created by given
estimator.
features: Input dict of Tensor objects created by input_fn which
is given to estimator.evaluate as an argument.
labels: Labels Tensor or dict of Tensor created by input_fn
which is given to estimator.evaluate as an argument.
config: config attribute of the estimator.
Returns: Dict of metric results keyed by name. Final metrics are a
union of this and estimator's existing metrics. If there is a name
conflict between this and estimators existing metrics, this will
override the existing one. The values of the dict are the results of
calling a metric function, namely a (metric_tensor, update_op) tuple.
[null,null,["Last updated 2024-01-23 UTC."],[],[],null,["# tf.estimator.add_metrics\n\n\u003cbr /\u003e\n\n|------------------------------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/tensorflow/estimator/tree/master/tensorflow_estimator/python/estimator/extenders.py#L29-L100) |\n\nCreates a new [`tf.estimator.Estimator`](../../tf/estimator/Estimator) which has given metrics. (deprecated)\n\n#### View aliases\n\n\n**Compat aliases for migration**\n\nSee\n[Migration guide](https://www.tensorflow.org/guide/migrate) for\nmore details.\n\n[`tf.compat.v1.estimator.add_metrics`](https://www.tensorflow.org/api_docs/python/tf/estimator/add_metrics)\n\n\u003cbr /\u003e\n\n tf.estimator.add_metrics(\n estimator, metric_fn\n )\n\n| **Deprecated:** THIS FUNCTION IS DEPRECATED. It will be removed in a future version. Instructions for updating: Use tf.keras instead.\n\n#### Example:\n\n def my_auc(labels, predictions):\n auc_metric = tf.keras.metrics.AUC(name=\"my_auc\")\n auc_metric.update_state(y_true=labels, y_pred=predictions['logistic'])\n return {'auc': auc_metric}\n\n estimator = tf.estimator.DNNClassifier(...)\n estimator = tf.estimator.add_metrics(estimator, my_auc)\n estimator.train(...)\n estimator.evaluate(...)\n\nExample usage of custom metric which uses features: \n\n def my_auc(labels, predictions, features):\n auc_metric = tf.keras.metrics.AUC(name=\"my_auc\")\n auc_metric.update_state(y_true=labels, y_pred=predictions['logistic'],\n sample_weight=features['weight'])\n return {'auc': auc_metric}\n\n estimator = tf.estimator.DNNClassifier(...)\n estimator = tf.estimator.add_metrics(estimator, my_auc)\n estimator.train(...)\n estimator.evaluate(...)\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `estimator` | A [`tf.estimator.Estimator`](../../tf/estimator/Estimator) object. |\n| `metric_fn` | A function which should obey the following signature: \u003cbr /\u003e - Args: can only have following four arguments in any order: - predictions: Predictions `Tensor` or dict of `Tensor` created by given `estimator`. - features: Input `dict` of `Tensor` objects created by `input_fn` which is given to `estimator.evaluate` as an argument. - labels: Labels `Tensor` or dict of `Tensor` created by `input_fn` which is given to `estimator.evaluate` as an argument. - config: config attribute of the `estimator`. - Returns: Dict of metric results keyed by name. Final metrics are a union of this and `estimator's` existing metrics. If there is a name conflict between this and `estimator`s existing metrics, this will override the existing one. The values of the dict are the results of calling a metric function, namely a `(metric_tensor, update_op)` tuple. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|---|---|\n| A new [`tf.estimator.Estimator`](../../tf/estimator/Estimator) which has a union of original metrics with given ones. ||\n\n\u003cbr /\u003e"]]