tf.image.flip_up_down
Stay organized with collections
Save and categorize content based on your preferences.
Flip an image vertically (upside down).
tf.image.flip_up_down(
image
)
Outputs the contents of image
flipped along the height dimension.
See also reverse()
.
Usage Example:
x = [[[1.0, 2.0, 3.0],
[4.0, 5.0, 6.0]],
[[7.0, 8.0, 9.0],
[10.0, 11.0, 12.0]]]
tf.image.flip_up_down(x)
<tf.Tensor: shape=(2, 2, 3), dtype=float32, numpy=
array([[[ 7., 8., 9.],
[10., 11., 12.]],
[[ 1., 2., 3.],
[ 4., 5., 6.]]], dtype=float32)>
Args |
image
|
4-D Tensor of shape [batch, height, width, channels] or 3-D Tensor
of shape [height, width, channels] .
|
Returns |
A Tensor of the same type and shape as image .
|
Raises |
ValueError
|
if the shape of image not supported.
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2024-01-23 UTC.
[null,null,["Last updated 2024-01-23 UTC."],[],[],null,["# tf.image.flip_up_down\n\n\u003cbr /\u003e\n\n|----------------------------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/tensorflow/tensorflow/blob/v2.15.0.post1/tensorflow/python/ops/image_ops_impl.py#L581-L613) |\n\nFlip an image vertically (upside down).\n\n#### View aliases\n\n\n**Compat aliases for migration**\n\nSee\n[Migration guide](https://www.tensorflow.org/guide/migrate) for\nmore details.\n\n[`tf.compat.v1.image.flip_up_down`](https://www.tensorflow.org/api_docs/python/tf/image/flip_up_down)\n\n\u003cbr /\u003e\n\n tf.image.flip_up_down(\n image\n )\n\nOutputs the contents of `image` flipped along the height dimension.\n\nSee also `reverse()`.\n\n#### Usage Example:\n\n x = [[[1.0, 2.0, 3.0],\n [4.0, 5.0, 6.0]],\n [[7.0, 8.0, 9.0],\n [10.0, 11.0, 12.0]]]\n tf.image.flip_up_down(x)\n \u003ctf.Tensor: shape=(2, 2, 3), dtype=float32, numpy=\n array([[[ 7., 8., 9.],\n [10., 11., 12.]],\n [[ 1., 2., 3.],\n [ 4., 5., 6.]]], dtype=float32)\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|---------|------------------------------------------------------------------------------------------------------------|\n| `image` | 4-D Tensor of shape `[batch, height, width, channels]` or 3-D Tensor of shape `[height, width, channels]`. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|---|---|\n| A `Tensor` of the same type and shape as `image`. ||\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Raises ------ ||\n|--------------|----------------------------------------|\n| `ValueError` | if the shape of `image` not supported. |\n\n\u003cbr /\u003e"]]