tf.keras.layers.UpSampling1D
Stay organized with collections
Save and categorize content based on your preferences.
Upsampling layer for 1D inputs.
Inherits From: Layer
, Module
tf.keras.layers.UpSampling1D(
size=2, **kwargs
)
Repeats each temporal step size
times along the time axis.
Examples:
input_shape = (2, 2, 3)
x = np.arange(np.prod(input_shape)).reshape(input_shape)
print(x)
[[[ 0 1 2]
[ 3 4 5]]
[[ 6 7 8]
[ 9 10 11]]]
y = tf.keras.layers.UpSampling1D(size=2)(x)
print(y)
tf.Tensor(
[[[ 0 1 2]
[ 0 1 2]
[ 3 4 5]
[ 3 4 5]]
[[ 6 7 8]
[ 6 7 8]
[ 9 10 11]
[ 9 10 11]]], shape=(2, 4, 3), dtype=int64)
Args |
size
|
Integer. Upsampling factor.
|
|
3D tensor with shape: (batch_size, steps, features) .
|
Output shape |
3D tensor with shape: (batch_size, upsampled_steps, features) .
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2024-01-23 UTC.
[null,null,["Last updated 2024-01-23 UTC."],[],[],null,["# tf.keras.layers.UpSampling1D\n\n\u003cbr /\u003e\n\n|---------------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/keras-team/keras/tree/v2.15.0/keras/layers/reshaping/up_sampling1d.py#L28-L84) |\n\nUpsampling layer for 1D inputs.\n\nInherits From: [`Layer`](../../../tf/keras/layers/Layer), [`Module`](../../../tf/Module) \n\n tf.keras.layers.UpSampling1D(\n size=2, **kwargs\n )\n\nRepeats each temporal step `size` times along the time axis.\n\n#### Examples:\n\n input_shape = (2, 2, 3)\n x = np.arange(np.prod(input_shape)).reshape(input_shape)\n print(x)\n [[[ 0 1 2]\n [ 3 4 5]]\n [[ 6 7 8]\n [ 9 10 11]]]\n y = tf.keras.layers.UpSampling1D(size=2)(x)\n print(y)\n tf.Tensor(\n [[[ 0 1 2]\n [ 0 1 2]\n [ 3 4 5]\n [ 3 4 5]]\n [[ 6 7 8]\n [ 6 7 8]\n [ 9 10 11]\n [ 9 10 11]]], shape=(2, 4, 3), dtype=int64)\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|--------|-----------------------------|\n| `size` | Integer. Upsampling factor. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Input shape ----------- ||\n|---|---|\n| 3D tensor with shape: `(batch_size, steps, features)`. ||\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Output shape ------------ ||\n|---|---|\n| 3D tensor with shape: `(batch_size, upsampled_steps, features)`. ||\n\n\u003cbr /\u003e"]]