View source on GitHub
|
Computes the crossentropy loss between the labels and predictions.
Inherits From: Loss
tf.keras.losses.SparseCategoricalCrossentropy(
from_logits=False,
ignore_class=None,
reduction=losses_utils.ReductionV2.AUTO,
name='sparse_categorical_crossentropy'
)
Use this crossentropy loss function when there are two or more label
classes. We expect labels to be provided as integers. If you want to
provide labels using one-hot representation, please use
CategoricalCrossentropy loss. There should be # classes floating point
values per feature for y_pred and a single floating point value per
feature for y_true.
In the snippet below, there is a single floating point value per example for
y_true and # classes floating pointing values per example for y_pred.
The shape of y_true is [batch_size] and the shape of y_pred is
[batch_size, num_classes].
Standalone usage:
y_true = [1, 2]y_pred = [[0.05, 0.95, 0], [0.1, 0.8, 0.1]]# Using 'auto'/'sum_over_batch_size' reduction type.scce = tf.keras.losses.SparseCategoricalCrossentropy()scce(y_true, y_pred).numpy()1.177
# Calling with 'sample_weight'.scce(y_true, y_pred, sample_weight=tf.constant([0.3, 0.7])).numpy()0.814
# Using 'sum' reduction type.scce = tf.keras.losses.SparseCategoricalCrossentropy(reduction=tf.keras.losses.Reduction.SUM)scce(y_true, y_pred).numpy()2.354
# Using 'none' reduction type.scce = tf.keras.losses.SparseCategoricalCrossentropy(reduction=tf.keras.losses.Reduction.NONE)scce(y_true, y_pred).numpy()array([0.0513, 2.303], dtype=float32)
Usage with the compile() API:
model.compile(optimizer='sgd',
loss=tf.keras.losses.SparseCategoricalCrossentropy())
Args | |
|---|---|
from_logits
|
Whether y_pred is expected to be a logits tensor. By
default, we assume that y_pred encodes a probability
distribution.
|
ignore_class
|
Optional integer. The ID of a class to be ignored
during loss computation. This is useful, for example, in
segmentation problems featuring a "void" class (commonly -1 or
255) in segmentation maps.
By default (ignore_class=None), all classes are considered.
|
reduction
|
Type of tf.keras.losses.Reduction to apply to
loss. Default value is AUTO. AUTO indicates that the
reduction ption will be determined by the usage context. For
almost all cases this defaults to SUM_OVER_BATCH_SIZE. When
used under a tf.distribute.Strategy, except via
Model.compile() and Model.fit(), using AUTO or
SUM_OVER_BATCH_SIZE will raise an error. Please see this
custom training tutorial
for more details.
|
name
|
Optional name for the instance. Defaults to 'sparse_categorical_crossentropy'. |
Methods
from_config
@classmethodfrom_config( config )
Instantiates a Loss from its config (output of get_config()).
| Args | |
|---|---|
config
|
Output of get_config().
|
| Returns | |
|---|---|
A keras.losses.Loss instance.
|
get_config
get_config()
Returns the config dictionary for a Loss instance.
__call__
__call__(
y_true, y_pred, sample_weight=None
)
Invokes the Loss instance.
| Args | |
|---|---|
y_true
|
Ground truth values. shape = [batch_size, d0, .. dN],
except sparse loss functions such as sparse categorical
crossentropy where shape = [batch_size, d0, .. dN-1]
|
y_pred
|
The predicted values. shape = [batch_size, d0, .. dN]
|
sample_weight
|
Optional sample_weight acts as a coefficient for
the loss. If a scalar is provided, then the loss is simply
scaled by the given value. If sample_weight is a tensor of
size [batch_size], then the total loss for each sample of the
batch is rescaled by the corresponding element in the
sample_weight vector. If the shape of sample_weight is
[batch_size, d0, .. dN-1] (or can be broadcasted to this
shape), then each loss element of y_pred is scaled by the
corresponding value of sample_weight. (Note ondN-1: all loss
functions reduce by 1 dimension, usually axis=-1.)
|
| Returns | |
|---|---|
Weighted loss float Tensor. If reduction is NONE, this has
shape [batch_size, d0, .. dN-1]; otherwise, it is scalar.
(Note dN-1 because all loss functions reduce by 1 dimension,
usually axis=-1.)
|
| Raises | |
|---|---|
ValueError
|
If the shape of sample_weight is invalid.
|
View source on GitHub