View source on GitHub |
Calculates the number of false positives.
Inherits From: Metric
, Layer
, Module
tf.keras.metrics.FalsePositives(
thresholds=None, name=None, dtype=None
)
If sample_weight
is given, calculates the sum of the weights of
false positives. This metric creates one local variable, accumulator
that is used to keep track of the number of false positives.
If sample_weight
is None
, weights default to 1.
Use sample_weight
of 0 to mask values.
Standalone usage:
m = tf.keras.metrics.FalsePositives()
m.update_state([0, 1, 0, 0], [0, 0, 1, 1])
m.result().numpy()
2.0
m.reset_state()
m.update_state([0, 1, 0, 0], [0, 0, 1, 1], sample_weight=[0, 0, 1, 0])
m.result().numpy()
1.0
Usage with compile()
API:
model.compile(optimizer='sgd',
loss='binary_crossentropy',
metrics=[tf.keras.metrics.FalsePositives()])
Usage with a loss with from_logits=True
:
model.compile(optimizer='adam',
loss=tf.keras.losses.BinaryCrossentropy(from_logits=True),
metrics=[tf.keras.metrics.FalsePositives(thresholds=0)])
Methods
merge_state
merge_state(
metrics
)
Merges the state from one or more metrics.
This method can be used by distributed systems to merge the state computed by different metric instances. Typically the state will be stored in the form of the metric's weights. For example, a tf.keras.metrics.Mean metric contains a list of two weight values: a total and a count. If there were two instances of a tf.keras.metrics.Accuracy that each independently aggregated partial state for an overall accuracy calculation, these two metric's states could be combined as follows:
m1 = tf.keras.metrics.Accuracy()
_ = m1.update_state([[1], [2]], [[0], [2]])
m2 = tf.keras.metrics.Accuracy()
_ = m2.update_state([[3], [4]], [[3], [4]])
m2.merge_state([m1])
m2.result().numpy()
0.75
Args | |
---|---|
metrics
|
an iterable of metrics. The metrics must have compatible state. |
Raises | |
---|---|
ValueError
|
If the provided iterable does not contain metrics matching the metric's required specifications. |
reset_state
reset_state()
Resets all of the metric state variables.
This function is called between epochs/steps, when a metric is evaluated during training.
result
result()
Computes and returns the scalar metric value tensor or a dict of scalars.
Result computation is an idempotent operation that simply calculates the metric value using the state variables.
Returns | |
---|---|
A scalar tensor, or a dictionary of scalar tensors. |
update_state
update_state(
y_true, y_pred, sample_weight=None
)
Accumulates the metric statistics.
Args | |
---|---|
y_true
|
The ground truth values. |
y_pred
|
The predicted values. |
sample_weight
|
Optional weighting of each example. Can
be a Tensor whose rank is either 0, or the same rank as y_true ,
and must be broadcastable to y_true . Defaults to 1 .
|
Returns | |
---|---|
Update op. |