tf.keras.metrics.Recall

Computes the recall of the predictions with respect to the labels.

Inherits From: Metric, Layer, Module

This metric creates two local variables, true_positives and false_negatives, that are used to compute the recall. This value is ultimately returned as recall, an idempotent operation that simply divides true_positives by the sum of true_positives and false_negatives.

If sample_weight is None, weights default to 1. Use sample_weight of 0 to mask values.

If top_k is set, recall will be computed as how often on average a class among the labels of a batch entry is in the top-k predictions.

If class_id is specified, we calculate recall by considering only the entries in the batch for which class_id is in the label, and computing the fraction of them for which class_id is above the threshold and/or in the top-k predictions.

thresholds (Optional) A float value, or a Python list/tuple of float threshold values in [0, 1]. A threshold is compared with prediction values to determine the truth value of predictions (i.e., above the threshold is true, below is false). If used with a loss function that sets from_logits=True (i.e. no sigmoid applied to predictions), thresholds should be set to 0. One metric value is generated for each threshold value. If neither thresholds nor top_k are set, the default is to calculate recall with thresholds=0.5.
top_k (Optional) Unset by default. An int value specifying the top-k predictions to consider when calculating recall.
class_id (Optional) Integer class ID for which we want binary metrics. This must be in the half-open interval [0, num_classes), where num_classes is the last dimension of predictions.
name (Optional) string name of the metric instance.
dtype (Optional) data type of the metric result.

Standalone usage:

m = tf.keras.metrics.Recall()
m.update_state([0, 1, 1, 1], [1, 0, 1, 1])
m.result().numpy()
0.6666667
m.reset_state()
m.update_state([0, 1, 1, 1], [1, 0, 1, 1], sample_weight=[0, 0, 1, 0])
m.result().numpy()
1.0

Usage with compile() API:

model.compile(optimizer='sgd',
              loss='binary_crossentropy',
              metrics=[tf.keras.metrics.Recall()])

Usage with a loss with from_logits=True:

model.compile(optimizer='adam',
              loss=tf.keras.losses.BinaryCrossentropy(from_logits=True),
              metrics=[tf.keras.metrics.Recall(thresholds=0)])

Methods

merge_state

View source

Merges the state from one or more metrics.

This method can be used by distributed systems to merge the state computed by different metric instances. Typically the state will be stored in the form of the metric's weights. For example, a tf.keras.metrics.Mean metric contains a list of two weight values: a total and a count. If there were two instances of a tf.keras.metrics.Accuracy that each independently aggregated partial state for an overall accuracy calculation, these two metric's states could be combined as follows:

m1 = tf.keras.metrics.Accuracy()
_ = m1.update_state([[1], [2]], [[0], [2]])
m2 = tf.keras.metrics.Accuracy()
_ = m2.update_state([[3], [4]], [[3], [4]])
m2.merge_state([m1])
m2.result().numpy()
0.75

Args
metrics an iterable of metrics. The metrics must have compatible state.

Raises
ValueError If the provided iterable does not contain metrics matching the metric's required specifications.

reset_state

View source

Resets all of the metric state variables.

This function is called between epochs/steps, when a metric is evaluated during training.

result

View source

Computes and returns the scalar metric value tensor or a dict of scalars.

Result computation is an idempotent operation that simply calculates the metric value using the state variables.

Returns
A scalar tensor, or a dictionary of scalar tensors.

update_state

View source

Accumulates true positive and false negative statistics.

Args
y_true The ground truth values, with the same dimensions as y_pred. Will be cast to bool.
y_pred The predicted values. Each element must be in the range [0, 1].
sample_weight Optional weighting of each example. Can be a Tensor whose rank is either 0, or the same rank as y_true, and must be broadcastable to y_true. Defaults to 1.

Returns
Update op.