tf.keras.metrics.kl_divergence
Computes Kullback-Leibler divergence loss between y_true
& y_pred
.
tf.keras.metrics.kl_divergence(
y_true, y_pred
)
loss = y_true * log(y_true / y_pred)
See: https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence
Standalone usage:
y_true = np.random.randint(0, 2, size=(2, 3)).astype(np.float64)
y_pred = np.random.random(size=(2, 3))
loss = tf.keras.losses.kullback_leibler_divergence(y_true, y_pred)
assert loss.shape == (2,)
y_true = tf.keras.backend.clip(y_true, 1e-7, 1)
y_pred = tf.keras.backend.clip(y_pred, 1e-7, 1)
assert np.array_equal(
loss.numpy(), np.sum(y_true * np.log(y_true / y_pred), axis=-1))
Args |
y_true
|
Tensor of true targets.
|
y_pred
|
Tensor of predicted targets.
|
Returns |
A Tensor with loss.
|
Raises |
TypeError
|
If y_true cannot be cast to the y_pred.dtype .
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2024-01-23 UTC.
[null,null,["Last updated 2024-01-23 UTC."],[],[]]