tf.raw_ops.CropAndResizeGradImage
Computes the gradient of the crop_and_resize op wrt the input image tensor.
tf.raw_ops.CropAndResizeGradImage(
grads,
boxes,
box_ind,
image_size,
T,
method='bilinear',
name=None
)
Args |
grads
|
A Tensor of type float32 .
A 4-D tensor of shape [num_boxes, crop_height, crop_width, depth] .
|
boxes
|
A Tensor of type float32 .
A 2-D tensor of shape [num_boxes, 4] . The i -th row of the tensor
specifies the coordinates of a box in the box_ind[i] image and is specified
in normalized coordinates [y1, x1, y2, x2] . A normalized coordinate value of
y is mapped to the image coordinate at y * (image_height - 1) , so as the
[0, 1] interval of normalized image height is mapped to
[0, image_height - 1] in image height coordinates. We do allow y1 > y2, in
which case the sampled crop is an up-down flipped version of the original
image. The width dimension is treated similarly. Normalized coordinates
outside the [0, 1]range are allowed, in which case we use extrapolation_valueto extrapolate the input image values.
</td>
</tr><tr>
<td> box_ind<a id="box_ind"></a>
</td>
<td>
A Tensorof type int32.
A 1-D tensor of shape [num_boxes]with int32 values in [0, batch).
The value of box_ind[i]specifies the image that the i-th box refers to.
</td>
</tr><tr>
<td> image_size<a id="image_size"></a>
</td>
<td>
A Tensorof type int32.
A 1-D tensor with value [batch, image_height, image_width, depth]containing the original image size. Both image_heightand image_widthneed
to be positive.
</td>
</tr><tr>
<td> T<a id="T"></a>
</td>
<td>
A <a href="../../tf/dtypes/DType"><code>tf.DType</code></a> from: tf.float32, tf.half, tf.float64.
</td>
</tr><tr>
<td> method<a id="method"></a>
</td>
<td>
An optional stringfrom: "bilinear", "nearest". Defaults to "bilinear".
A string specifying the interpolation method. Only 'bilinear' is
supported for now.
</td>
</tr><tr>
<td> name`
|
A name for the operation (optional).
|
Returns |
A Tensor of type T .
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2024-01-23 UTC.
[null,null,["Last updated 2024-01-23 UTC."],[],[]]