Computes the grayscale dilation of 4-D input and 3-D filter tensors.
tf.raw_ops.Dilation2D(
input, filter, strides, rates, padding, name=None
)
The input tensor has shape [batch, in_height, in_width, depth] and the
filter tensor has shape [filter_height, filter_width, depth], i.e., each
input channel is processed independently of the others with its own structuring
function. The output tensor has shape
[batch, out_height, out_width, depth]. The spatial dimensions of the output
tensor depend on the padding algorithm. We currently only support the default
"NHWC" data_format.
In detail, the grayscale morphological 2-D dilation is the max-sum correlation
(for consistency with conv2d, we use unmirrored filters):
output[b, y, x, c] =
max_{dy, dx} input[b,
strides[1] * y + rates[1] * dy,
strides[2] * x + rates[2] * dx,
c] +
filter[dy, dx, c]
Max-pooling is a special case when the filter has size equal to the pooling kernel size and contains all zeros.
Note on duality: The dilation of input by the filter is equal to the
negation of the erosion of -input by the reflected filter.
Returns | |
|---|---|
A Tensor. Has the same type as input.
|