tf.raw_ops.QuantizedAdd
Returns x + y element-wise, working on quantized buffers.
tf.raw_ops.QuantizedAdd(
x,
y,
min_x,
max_x,
min_y,
max_y,
Toutput=tf.dtypes.qint32
,
name=None
)
Args |
x
|
A Tensor . Must be one of the following types: qint8 , quint8 , qint32 , qint16 , quint16 .
|
y
|
A Tensor . Must be one of the following types: qint8 , quint8 , qint32 , qint16 , quint16 .
|
min_x
|
A Tensor of type float32 .
The float value that the lowest quantized x value represents.
|
max_x
|
A Tensor of type float32 .
The float value that the highest quantized x value represents.
|
min_y
|
A Tensor of type float32 .
The float value that the lowest quantized y value represents.
|
max_y
|
A Tensor of type float32 .
The float value that the highest quantized y value represents.
|
Toutput
|
An optional tf.DType from: tf.qint8, tf.quint8, tf.qint32, tf.qint16, tf.quint16 . Defaults to tf.qint32 .
|
name
|
A name for the operation (optional).
|
Returns |
A tuple of Tensor objects (z, min_z, max_z).
|
z
|
A Tensor of type Toutput .
|
min_z
|
A Tensor of type float32 .
|
max_z
|
A Tensor of type float32 .
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2024-01-23 UTC.
[null,null,["Last updated 2024-01-23 UTC."],[],[]]