Computes the minimum along segments of a tensor.
tf.raw_ops.UnsortedSegmentMin(
data, segment_ids, num_segments, name=None
)
Read the section on segmentation for an explanation of segments.
This operator is similar to tf.math.unsorted_segment_sum,
Instead of computing the sum over segments, it computes the minimum such that:
\(output_i = \min_{j...} data_[j...]\) where min is over tuples j... such
that segment_ids[j...] == i.
If the minimum is empty for a given segment ID i, it outputs the largest
possible value for the specific numeric type,
output[i] = numeric_limits<T>::max().
For example:
c = tf.constant([[1,2,3,4], [5,6,7,8], [4,3,2,1]])tf.math.unsorted_segment_min(c, tf.constant([0, 1, 0]), num_segments=2).numpy()array([[1, 2, 2, 1],[5, 6, 7, 8]], dtype=int32)
If the given segment ID i is negative, then the corresponding value is
dropped, and will not be included in the result.
Returns | |
|---|---|
A Tensor. Has the same type as data.
|