Apply a sparse update to a tensor taking the element-wise maximum.
tf.tensor_scatter_nd_max(
tensor: Annotated[Any, TV_TensorScatterMax_T],
indices: Annotated[Any, TV_TensorScatterMax_Tindices],
updates: Annotated[Any, TV_TensorScatterMax_T],
name=None
) -> Annotated[Any, TV_TensorScatterMax_T]
Returns a new tensor copied from tensor whose values are element-wise maximum between
tensor and updates according to the indices.
tensor = [0, 0, 0, 0, 0, 0, 0, 0]indices = [[1], [4], [5]]updates = [1, -1, 1]tf.tensor_scatter_nd_max(tensor, indices, updates).numpy()array([0, 1, 0, 0, 0, 1, 0, 0], dtype=int32)
Refer to tf.tensor_scatter_nd_update for more details.
Returns | |
|---|---|
A Tensor. Has the same type as tensor.
|