Computes exponential of x element-wise. \(y = e^x\).

This function computes the exponential of the input tensor element-wise. i.e. math.exp(x) or \(e^x\), where x is the input tensor. \(e\) denotes Euler's number and is approximately equal to 2.718281. Output is positive for any real input.

x = tf.constant(2.0)
<tf.Tensor: shape=(), dtype=float32, numpy=7.389056>
x = tf.constant([2.0, 8.0])
<tf.Tensor: shape=(2,), dtype=float32,
numpy=array([   7.389056, 2980.958   ], dtype=float32)>

For complex numbers, the exponential value is calculated as

\[ e^{x+iy} = {e^x} {e^{iy} } = {e^x} ({\cos (y) + i \sin (y)}) \]

For 1+1j the value would be computed as:

\[ e^1 (\cos (1) + i \sin (1)) = 2.7182817 \times (0.5403023+0.84147096j) \]

x = tf.constant(1 + 1j)
<tf.Tensor: shape=(), dtype=complex128,

x A tf.Tensor. Must be one of the following types: bfloat16, half, float32, float64, complex64, complex128.
name A name for the operation (optional).

A tf.Tensor. Has the same type as x.

numpy compatibility

Equivalent to np.exp