使用 pip 安装 TensorFlow

TensorFlow 2 软件包现已推出

  • tensorflow:支持 CPU 和 GPU 的最新稳定版(适用于 Ubuntu 和 Windows)
  • tf-nightly:预览 build(不稳定)。Ubuntu 和 Windows 均包含 GPU 支持

旧版 TensorFlow

对于 TensorFlow 1.x,CPU 和 GPU 软件包是分开的:

  • tensorflow==1.15:仅支持 CPU 的版本
  • tensorflow-gpu==1.15支持 GPU 的版本(适用于 Ubuntu 和 Windows)

系统要求

  • Python 3.6–3.9
    • 若要支持 Python 3.9,需要使用 TensorFlow 2.5 或更高版本。
    • 若要支持 Python 3.8,需要使用 TensorFlow 2.2 或更高版本。
  • pip 19.0 或更高版本(需要 manylinux2010 支持)
  • Ubuntu 16.04 或更高版本(64 位)
  • macOS 10.12.6 (Sierra) 或更高版本(64 位)(不支持 GPU)
    • macOS 要求使用 pip 20.3 或更高版本
  • Windows 7 或更高版本(64 位)
  • GPU 支持需要使用支持 CUDA® 的卡(适用于 Ubuntu 和 Windows)

硬件要求

  • 从 TensorFlow 1.6 开始,二进制文件使用 AVX 指令,这些指令可能无法在旧版 CPU 上运行。
  • 阅读 GPU 支持指南,以在 Ubuntu 或 Windows 上设置支持 CUDA® 的 GPU 卡。

1. 在系统上安装 Python 开发环境

检查是否已配置 Python 环境:

python3 --version
pip3 --version

如果已安装这些软件包,请跳至下一步。
否则,请安装 Pythonpip 软件包管理器venv

Ubuntu

sudo apt update
sudo apt install python3-dev python3-pip python3-venv

macOS

使用 Homebrew 软件包管理器安装:

/usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)"
export PATH="/usr/local/opt/python/libexec/bin:$PATH"
# if you are on macOS 10.12 (Sierra) use `export PATH="/usr/local/bin:/usr/local/sbin:$PATH"`
brew update
brew install python  # Python 3

Windows

安装适用于 Visual Studio 2015、2017 和 2019 的 Microsoft Visual C++ 可再发行软件包。从 TensorFlow 2.1.0 版开始,此软件包需要 msvcp140_1.dll 文件(旧版可再发行软件包可能不提供此文件)。该可再发行软件包随附在 Visual Studio 2019 中,但可以单独安装:

  1. 转到 Microsoft Visual C++ 下载页面。
  2. 在页面中向下滚动到“Visual Studio 2015、2017 和 2019”部分。
  3. 为您的平台下载并安装适用于 Visual Studio 2015、2017 和 2019 的 Microsoft Visual C++ 可再发行软件包。

确保在 Windows 上启用了长路径

安装 64 位适用于 Windows 的 Python 3 版本(选择 pip 作为可选功能)。

其他

curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py
python get-pip.py

Python 虚拟环境用于将软件包安装与系统隔离开来。

Ubuntu/macOS

创建一个新的虚拟环境,方法是选择 Python 解释器并创建一个 ./venv 目录来存放它:

python3 -m venv --system-site-packages ./venv

使用特定于 shell 的命令激活该虚拟环境:

source ./venv/bin/activate  # sh, bash, or zsh
. ./venv/bin/activate.fish  # fish
source ./venv/bin/activate.csh  # csh or tcsh

当虚拟环境处于有效状态时,shell 提示符带有 (venv) 前缀。

在不影响主机系统设置的情况下,在虚拟环境中安装软件包。首先升级 pip

pip install --upgrade pip

pip list  # show packages installed within the virtual environment

之后退出虚拟环境:

deactivate  # don't exit until you're done using TensorFlow

Windows

创建一个新的虚拟环境,方法是选择 Python 解释器并创建一个 .\venv 目录来存放它:

python -m venv --system-site-packages .\venv

激活虚拟环境:

.\venv\Scripts\activate

在不影响主机系统设置的情况下,在虚拟环境中安装软件包。首先升级 pip

pip install --upgrade pip

pip list  # show packages installed within the virtual environment

之后退出虚拟环境:

deactivate  # don't exit until you're done using TensorFlow

Conda

虽然我们建议使用 TensorFlow 提供的 pip 软件包,但也可以使用由社区提供支持的 Anaconda 软件包如需安装软件包,请阅读 Anaconda TensorFlow 指南

3.安装 TensorFlow pip 软件包

从 PyPI 中选择以下某个 TensorFlow 软件包进行安装:

  • tensorflow:支持 CPU 和 GPU 的最新稳定版(适用于 Ubuntu 和 Windows)。
  • tf-nightly:预览 build(不稳定)。Ubuntu 和 Windows 均包含 GPU 支持
  • tensorflow==1.15:TensorFlow 1.x 的最终版本。

虚拟环境安装

pip install --upgrade tensorflow

验证安装效果:

python -c "import tensorflow as tf;print(tf.reduce_sum(tf.random.normal([1000, 1000])))"

系统安装

pip3 install --user --upgrade tensorflow  # install in $HOME

验证安装效果:

python3 -c "import tensorflow as tf; print(tf.reduce_sum(tf.random.normal([1000, 1000])))"

软件包位置

部分安装方式需要您提供 TensorFlow Python 软件包的网址。您需要根据 Python 版本指定网址。

版本网址
Linux
Python 3.6(支持 GPU) https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow_gpu-2.6.0-cp36-cp36m-manylinux2010_x86_64.whl
Python 3.6(仅支持 CPU) https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow_cpu-2.6.0-cp36-cp36m-manylinux2010_x86_64.whl
Python 3.7(支持 GPU) https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow_gpu-2.6.0-cp37-cp37m-manylinux2010_x86_64.whl
Python 3.7(仅支持 CPU) https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow_cpu-2.6.0-cp37-cp37m-manylinux2010_x86_64.whl
Python 3.8(支持 GPU) https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow_gpu-2.6.0-cp38-cp38-manylinux2010_x86_64.whl
Python 3.8(仅支持 CPU) https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow_cpu-2.6.0-cp38-cp38-manylinux2010_x86_64.whl
Python 3.9(支持 GPU) https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow_gpu-2.6.0-cp39-cp39-manylinux2010_x86_64.whl
Python 3.9(仅支持 CPU) https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow_cpu-2.6.0-cp39-cp39-manylinux2010_x86_64.whl
macOS(仅支持 CPU)
Python 3.6 https://storage.googleapis.com/tensorflow/mac/cpu/tensorflow-2.6.0-cp36-cp36m-macosx_10_11_x86_64.whl
Python 3.7 https://storage.googleapis.com/tensorflow/mac/cpu/tensorflow-2.6.0-cp37-cp37m-macosx_10_11_x86_64.whl
Python 3.8 https://storage.googleapis.com/tensorflow/mac/cpu/tensorflow-2.6.0-cp38-cp38-macosx_10_11_x86_64.whl
Python 3.9 https://storage.googleapis.com/tensorflow/mac/cpu/tensorflow-2.6.0-cp39-cp39-macosx_10_11_x86_64.whl
Windows
Python 3.6(支持 GPU) https://storage.googleapis.com/tensorflow/windows/gpu/tensorflow_gpu-2.6.0-cp36-cp36m-win_amd64.whl
Python 3.6(仅支持 CPU) https://storage.googleapis.com/tensorflow/windows/cpu/tensorflow_cpu-2.6.0-cp36-cp36m-win_amd64.whl
Python 3.7(支持 GPU) https://storage.googleapis.com/tensorflow/windows/gpu/tensorflow_gpu-2.6.0-cp37-cp37m-win_amd64.whl
Python 3.7(仅支持 CPU) https://storage.googleapis.com/tensorflow/windows/cpu/tensorflow_cpu-2.6.0-cp37-cp37m-win_amd64.whl
Python 3.8(支持 GPU) https://storage.googleapis.com/tensorflow/windows/gpu/tensorflow_gpu-2.6.0-cp38-cp38-win_amd64.whl
Python 3.8(仅支持 CPU) https://storage.googleapis.com/tensorflow/windows/cpu/tensorflow_cpu-2.6.0-cp38-cp38-win_amd64.whl
Python 3.9(支持 GPU) https://storage.googleapis.com/tensorflow/windows/gpu/tensorflow_gpu-2.6.0-cp39-cp39-win_amd64.whl
Python 3.9(仅支持 CPU) https://storage.googleapis.com/tensorflow/windows/cpu/tensorflow_cpu-2.6.0-cp39-cp39-win_amd64.whl