使用集合让一切井井有条
根据您的偏好保存内容并对其进行分类。
TFX 是一个端到端平台,用于部署生产环境机器学习流水线
当您准备好将模型从研究状态切换到生产状态时,可以使用 TFX 创建和管理生产流水线。
工作原理
TFX 流水线是实现机器学习流水线的一系列组件,专门用于可扩容的高性能机器学习任务。这些组件使用 TFX 库构建而成,您也可以单独使用这些组件。
中级
创建托管于 Google Cloud 之上的 TFX 流水线
本教程介绍了如何使用 TFX 和 Cloud AI Platform Pipelines 在 Google Cloud 上创建您自己的机器学习流水线。您将遵循典型的机器学习开发流程,即从检查数据集开始,最后得到一个完整且有效的流水线。
[null,null,[],[],[],null,["# TFX | ML Production Pipelines\n\nTFX is an end-to-end platform for deploying production ML pipelines\n===================================================================\n\nWhen you're ready to move your models from research to production, use TFX to create and manage a production pipeline. \n[Run Colab](https://colab.sandbox.google.com/github/tensorflow/tfx/blob/master/docs/tutorials/tfx/penguin_simple.ipynb)\n\n\nGet started by exploring each built-in component of TFX.\n[View tutorials](/tfx/tutorials)\n\n\nLearn how to use TFX with end-to-end examples.\n[View the guide](/tfx/guide)\n\n\nGuides explain the concepts and components of TFX.\n[Explore addons](/tfx/addons)\n\n\nAdditional TFX components contributed by the community. \n\n### How it works\n\nA TFX pipeline is a sequence of components that implement an ML pipeline which is specifically designed for scalable, high-performance machine learning tasks. Components are built using TFX libraries which can also be used individually. \nIngest \\& validate data\n\n*** ** * ** ***\n\nExampleGen\n\n*** ** * ** ***\n\nIngests data into TFX pipelines and optionally splits the input dataset.\n[See guide](http://tensorflow.google.com/tfx/guide/examplegen) \n[ML Metadata](http://tensorflow.google.com/tfx/guide/mlmd) \nStatisticsGen\n\n*** ** * ** ***\n\nGenerates features statistics over both training and serving data.\n[See guide](http://tensorflow.google.com/tfx/guide/statsgen) \nSchemaGen\n\n*** ** * ** ***\n\nCreates schema by inferring types, categories, and ranges from the training data.\n[See guide](http://tensorflow.google.com/tfx/guide/schemagen) \nExampleValidator\n\n*** ** * ** ***\n\nIdentifies anomalies in training and serving data.\n[See guide](http://tensorflow.google.com/tfx/guide/exampleval) \n[TensorFlow Data Validation](http://tensorflow.google.com/tfx/guide/tfdv) \nTrain \\& analyze model\n\n*** ** * ** ***\n\nTransform\n\n*** ** * ** ***\n\nPerforms feature engineering on the dataset.\n[See guide](http://tensorflow.google.com/tfx/guide/transform) \n[TensorFlow Transform](http://tensorflow.google.com/tfx/transform/get_started) \nTuner\n\n*** ** * ** ***\n\nTunes the hyperparameters of the model.\n[See guide](http://tensorflow.google.com/tfx/guide/tuner) \nTrainer\n\n*** ** * ** ***\n\nTrains a TensorFlow model.\n[See guide](http://tensorflow.google.com/tfx/guide/trainer) \n[TensorFlow](http://tensorflow.google.com/tfx/guide/train) \nEvaluator\n\n*** ** * ** ***\n\nPerforms deep analysis of training results and helps validate exported models.\n[See guide](http://tensorflow.google.com/tfx/guide/evaluator) \nInfraValidator\n\n*** ** * ** ***\n\nChecks the model is actually servable from the infrastructure, and prevents bad models from being pushed.\n[See guide](http://tensorflow.google.com/tfx/guide/infra_validator) \n[TensorFlow Model Analysis](http://tensorflow.google.com/tfx/guide/tfma) \nDeploy in production\n\n*** ** * ** ***\n\nPusher\n\n*** ** * ** ***\n\nDeploys the model on a serving infrastructure.\n[See guide](http://tensorflow.google.com/tfx/guide/pusher) \n[TensorFlow Serving, TF Lite \\& TFJS](http://tensorflow.google.com/tfx/guide#deployment_targets) \n\nHow companies are using TFX\n---------------------------\n\n[See case studies](/about/case-studies?filter=TFX) \n[Spotify](https://labs.spotify.com/2020/01/16/for-your-ears-only-personalizing-spotify-home-with-machine-learning/) \n[Airbus](https://blog.tensorflow.org/2020/04/how-airbus-detects-anomalies-iss-telemetry-data-tfx.html) \n[Gmail](https://security.googleblog.com/2020/02/improving-malicious-document-detection.html) \n[OpenX](https://blog.tensorflow.org/2021/02/how-openx-trains-and-serves-for-million-queries-per-second.html) \n\nSolutions to common problems\n----------------------------\n\nExplore step-by-step tutorials to help you with your projects. \nIntermediate\n[Train and serve a TensorFlow model with TensorFlow Serving](/tfx/tutorials/serving/rest_simple) \nThis guide trains a neural network model to classify images of clothing, like sneakers and shirts, saves the trained model, and then serves it with TensorFlow Serving. The focus is on TensorFlow Serving, rather than the modeling and training in TensorFlow. \nIntermediate\n[Create TFX pipelines hosted on Google Cloud](/tfx/tutorials/tfx/cloud-ai-platform-pipelines) \nAn introduction to TFX and Cloud AI Platform Pipelines to create your own machine learning pipelines on Google Cloud. Follow a typical ML development process, starting by examining the dataset, and ending up with a complete working pipeline. \nIntermediate\n[Use TFX with TensorFlow Lite for on-device inference](/tfx/tutorials/tfx/tfx_for_mobile) \nLearn how TFX can create and evaluate machine learning models that will be deployed on-device. TFX now provides native support for TFLite, which makes it possible to perform highly efficient inference on mobile devices. \n\nNews \\& announcements\n---------------------\n\nCheck out our [blog](https://blog.tensorflow.org/search?label=TFX&max-results=20) and [YouTube playlist](https://goo.gle/tfx-youtube) for additional TFX content, \nand subscribe to our TensorFlow newsletter to get the \nlatest announcements sent directly to your inbox. \n[Sign up](/subscribe) \n\nCommunity participation\n-----------------------\n\nSee more ways to participate in the TensorFlow community. \n[Community](/community) \n[TFX on GitHub](https://github.com/tensorflow/tfx) \n[ML Metadata](https://github.com/google/ml-metadata) [TensorFlow Data Validation](https://github.com/tensorflow/data-validation) [TensorFlow Transform](https://github.com/tensorflow/transform) [TensorFlow Model Analysis](https://github.com/tensorflow/model-analysis) [TensorFlow Serving](https://github.com/tensorflow/serving) \n[Stack Overflow](https://stackoverflow.com/questions/tagged/tfx) \n[ML Metadata](https://stackoverflow.com/questions/tagged/mlmd) [TensorFlow Data Validation](https://stackoverflow.com/questions/tagged/tensorflow-data-validation) [TensorFlow Transform](https://stackoverflow.com/questions/tagged/tensorflow-transform) [TensorFlow Model Analysis](https://stackoverflow.com/questions/tagged/tensorflow-model-analysis) [TensorFlow Serving](https://stackoverflow.com/questions/tagged/tensorflow-serving) \n[Issues, bug reports, and feature requests](https://github.com/tensorflow/tfx/issues) \n[ML Metadata](https://github.com/google/ml-metadata/issues) [TensorFlow Data Validation](https://github.com/tensorflow/data-validation/issues) [TensorFlow Transform](https://github.com/tensorflow/transform/issues) [TensorFlow Model Analysis](https://github.com/tensorflow/model-analysis/issues) [TensorFlow Serving](https://github.com/tensorflow/serving/issues) \n[Ask a question on TensorFlow Forum](https://discuss.tensorflow.org/tag/tfx) \n[Join the TFX-Addons Special Interest Group](https://github.com/tensorflow/tfx-addons) \n[Explore Dev Library community projects](https://devlibrary.withgoogle.com/products/ml) \n\nGet started with TFX\n--------------------\n\n[Explore tutorials](/tfx/tutorials)"]]