TensorFlow Addons Networks : Sequence-to-Sequence NMT with Attention Mechanism

View on TensorFlow.org View source on GitHub Download notebook

Overview

This notebook gives a brief introduction into the Sequence to Sequence Model Architecture In this noteboook you broadly cover four essential topics necessary for Neural Machine Translation:

  • Data cleaning
  • Data preparation
  • Neural Translation Model with Attention
  • Final Translation with tf.addons.seq2seq.BasicDecoder and tf.addons.seq2seq.BeamSearchDecoder

The basic idea behind such a model though, is only the encoder-decoder architecture. These networks are usually used for a variety of tasks like text-summerization, Machine translation, Image Captioning, etc. This tutorial provideas a hands-on understanding of the concept, explaining the technical jargons wherever necessary. You focus on the task of Neural Machine Translation (NMT) which was the very first testbed for seq2seq models.

Setup

pip install tensorflow-addons==0.11.2
import tensorflow as tf
import tensorflow_addons as tfa

import matplotlib.pyplot as plt
import matplotlib.ticker as ticker
from sklearn.model_selection import train_test_split

import unicodedata
import re
import numpy as np
import os
import io
import time

Data Cleaning and Data Preparation

You'll use a language dataset provided by http://www.manythings.org/anki/ This dataset contains language translation pairs in the format:


  May I borrow this book?    ¿Puedo tomar prestado este libro?

There are a variety of languages available, but you'll use the English-Spanish dataset. After downloading the dataset, here are the steps you'll take to prepare the data:

  1. Add a start and end token to each sentence.
  2. Clean the sentences by removing special characters.
  3. Create a Vocabulary with word index (mapping from word → id) and reverse word index (mapping from id → word).
  4. Pad each sentence to a maximum length. (Why? you need to fix the maximum length for the inputs to recurrent encoders)
def download_nmt():
    path_to_zip = tf.keras.utils.get_file(
    'spa-eng.zip', origin='http://storage.googleapis.com/download.tensorflow.org/data/spa-eng.zip',
    extract=True)

    path_to_file = os.path.dirname(path_to_zip)+"/spa-eng/spa.txt"
    return path_to_file

Define a NMTDataset class with necessary functions to follow Step 1 to Step 4.

The call() will return:

  1. train_dataset and val_dataset : tf.data.Dataset objects
  2. inp_lang_tokenizer and targ_lang_tokenizer : tf.keras.preprocessing.text.Tokenizer objects
class NMTDataset:
    def __init__(self, problem_type='en-spa'):
        self.problem_type = 'en-spa'
        self.inp_lang_tokenizer = None
        self.targ_lang_tokenizer = None


    def unicode_to_ascii(self, s):
        return ''.join(c for c in unicodedata.normalize('NFD', s) if unicodedata.category(c) != 'Mn')

    ## Step 1 and Step 2 
    def preprocess_sentence(self, w):
        w = self.unicode_to_ascii(w.lower().strip())

        # creating a space between a word and the punctuation following it
        # eg: "he is a boy." => "he is a boy ."
        # Reference:- https://stackoverflow.com/questions/3645931/python-padding-punctuation-with-white-spaces-keeping-punctuation
        w = re.sub(r"([?.!,¿])", r" \1 ", w)
        w = re.sub(r'[" "]+', " ", w)

        # replacing everything with space except (a-z, A-Z, ".", "?", "!", ",")
        w = re.sub(r"[^a-zA-Z?.!,¿]+", " ", w)

        w = w.strip()

        # adding a start and an end token to the sentence
        # so that the model know when to start and stop predicting.
        w = '<start> ' + w + ' <end>'
        return w

    def create_dataset(self, path, num_examples):
        # path : path to spa-eng.txt file
        # num_examples : Limit the total number of training example for faster training (set num_examples = len(lines) to use full data)
        lines = io.open(path, encoding='UTF-8').read().strip().split('\n')
        word_pairs = [[self.preprocess_sentence(w) for w in l.split('\t')]  for l in lines[:num_examples]]

        return zip(*word_pairs)

    # Step 3 and Step 4
    def tokenize(self, lang):
        # lang = list of sentences in a language

        # print(len(lang), "example sentence: {}".format(lang[0]))
        lang_tokenizer = tf.keras.preprocessing.text.Tokenizer(filters='', oov_token='<OOV>')
        lang_tokenizer.fit_on_texts(lang)

        ## tf.keras.preprocessing.text.Tokenizer.texts_to_sequences converts string (w1, w2, w3, ......, wn) 
        ## to a list of correspoding integer ids of words (id_w1, id_w2, id_w3, ...., id_wn)
        tensor = lang_tokenizer.texts_to_sequences(lang) 

        ## tf.keras.preprocessing.sequence.pad_sequences takes argument a list of integer id sequences 
        ## and pads the sequences to match the longest sequences in the given input
        tensor = tf.keras.preprocessing.sequence.pad_sequences(tensor, padding='post')

        return tensor, lang_tokenizer

    def load_dataset(self, path, num_examples=None):
        # creating cleaned input, output pairs
        targ_lang, inp_lang = self.create_dataset(path, num_examples)

        input_tensor, inp_lang_tokenizer = self.tokenize(inp_lang)
        target_tensor, targ_lang_tokenizer = self.tokenize(targ_lang)

        return input_tensor, target_tensor, inp_lang_tokenizer, targ_lang_tokenizer

    def call(self, num_examples, BUFFER_SIZE, BATCH_SIZE):
        file_path = download_nmt()
        input_tensor, target_tensor, self.inp_lang_tokenizer, self.targ_lang_tokenizer = self.load_dataset(file_path, num_examples)

        input_tensor_train, input_tensor_val, target_tensor_train, target_tensor_val = train_test_split(input_tensor, target_tensor, test_size=0.2)

        train_dataset = tf.data.Dataset.from_tensor_slices((input_tensor_train, target_tensor_train))
        train_dataset = train_dataset.shuffle(BUFFER_SIZE).batch(BATCH_SIZE, drop_remainder=True)

        val_dataset = tf.data.Dataset.from_tensor_slices((input_tensor_val, target_tensor_val))
        val_dataset = val_dataset.batch(BATCH_SIZE, drop_remainder=True)

        return train_dataset, val_dataset, self.inp_lang_tokenizer, self.targ_lang_tokenizer
BUFFER_SIZE = 32000
BATCH_SIZE = 64
# Let's limit the #training examples for faster training
num_examples = 30000

dataset_creator = NMTDataset('en-spa')
train_dataset, val_dataset, inp_lang, targ_lang = dataset_creator.call(num_examples, BUFFER_SIZE, BATCH_SIZE)
example_input_batch, example_target_batch = next(iter(train_dataset))
example_input_batch.shape, example_target_batch.shape
(TensorShape([64, 16]), TensorShape([64, 11]))

Some important parameters

vocab_inp_size = len(inp_lang.word_index)+1
vocab_tar_size = len(targ_lang.word_index)+1
max_length_input = example_input_batch.shape[1]
max_length_output = example_target_batch.shape[1]

embedding_dim = 256
units = 1024
steps_per_epoch = num_examples//BATCH_SIZE
print("max_length_english, max_length_spanish, vocab_size_english, vocab_size_spanish")
max_length_input, max_length_output, vocab_inp_size, vocab_tar_size
max_length_spanish, max_length_english, vocab_size_spanish, vocab_size_english
(16, 11, 9415, 4936)
##### 

class Encoder(tf.keras.Model):
  def __init__(self, vocab_size, embedding_dim, enc_units, batch_sz):
    super(Encoder, self).__init__()
    self.batch_sz = batch_sz
    self.enc_units = enc_units
    self.embedding = tf.keras.layers.Embedding(vocab_size, embedding_dim)

    ##________ LSTM layer in Encoder ------- ##
    self.lstm_layer = tf.keras.layers.LSTM(self.enc_units,
                                   return_sequences=True,
                                   return_state=True,
                                   recurrent_initializer='glorot_uniform')



  def call(self, x, hidden):
    x = self.embedding(x)
    output, h, c = self.lstm_layer(x, initial_state = hidden)
    return output, h, c

  def initialize_hidden_state(self):
    return [tf.zeros((self.batch_sz, self.enc_units)), tf.zeros((self.batch_sz, self.enc_units))]
## Test Encoder Stack

encoder = Encoder(vocab_inp_size, embedding_dim, units, BATCH_SIZE)


# sample input
sample_hidden = encoder.initialize_hidden_state()
sample_output, sample_h, sample_c = encoder(example_input_batch, sample_hidden)
print ('Encoder output shape: (batch size, sequence length, units) {}'.format(sample_output.shape))
print ('Encoder h vecotr shape: (batch size, units) {}'.format(sample_h.shape))
print ('Encoder c vector shape: (batch size, units) {}'.format(sample_c.shape))
Encoder output shape: (batch size, sequence length, units) (64, 16, 1024)
Encoder h vecotr shape: (batch size, units) (64, 1024)
Encoder c vector shape: (batch size, units) (64, 1024)
class Decoder(tf.keras.Model):
  def __init__(self, vocab_size, embedding_dim, dec_units, batch_sz, attention_type='luong'):
    super(Decoder, self).__init__()
    self.batch_sz = batch_sz
    self.dec_units = dec_units
    self.attention_type = attention_type

    # Embedding Layer
    self.embedding = tf.keras.layers.Embedding(vocab_size, embedding_dim)

    #Final Dense layer on which softmax will be applied
    self.fc = tf.keras.layers.Dense(vocab_size)

    # Define the fundamental cell for decoder recurrent structure
    self.decoder_rnn_cell = tf.keras.layers.LSTMCell(self.dec_units)



    # Sampler
    self.sampler = tfa.seq2seq.sampler.TrainingSampler()

    # Create attention mechanism with memory = None
    self.attention_mechanism = self.build_attention_mechanism(self.dec_units, 
                                                              None, self.batch_sz*[max_length_input], self.attention_type)

    # Wrap attention mechanism with the fundamental rnn cell of decoder
    self.rnn_cell = self.build_rnn_cell(batch_sz)

    # Define the decoder with respect to fundamental rnn cell
    self.decoder = tfa.seq2seq.BasicDecoder(self.rnn_cell, sampler=self.sampler, output_layer=self.fc)


  def build_rnn_cell(self, batch_sz):
    rnn_cell = tfa.seq2seq.AttentionWrapper(self.decoder_rnn_cell, 
                                  self.attention_mechanism, attention_layer_size=self.dec_units)
    return rnn_cell

  def build_attention_mechanism(self, dec_units, memory, memory_sequence_length, attention_type='luong'):
    # ------------- #
    # typ: Which sort of attention (Bahdanau, Luong)
    # dec_units: final dimension of attention outputs 
    # memory: encoder hidden states of shape (batch_size, max_length_input, enc_units)
    # memory_sequence_length: 1d array of shape (batch_size) with every element set to max_length_input (for masking purpose)

    if(attention_type=='bahdanau'):
      return tfa.seq2seq.BahdanauAttention(units=dec_units, memory=memory, memory_sequence_length=memory_sequence_length)
    else:
      return tfa.seq2seq.LuongAttention(units=dec_units, memory=memory, memory_sequence_length=memory_sequence_length)

  def build_initial_state(self, batch_sz, encoder_state, Dtype):
    decoder_initial_state = self.rnn_cell.get_initial_state(batch_size=batch_sz, dtype=Dtype)
    decoder_initial_state = decoder_initial_state.clone(cell_state=encoder_state)
    return decoder_initial_state


  def call(self, inputs, initial_state):
    x = self.embedding(inputs)
    outputs, _, _ = self.decoder(x, initial_state=initial_state, sequence_length=self.batch_sz*[max_length_output-1])
    return outputs
# Test decoder stack

decoder = Decoder(vocab_tar_size, embedding_dim, units, BATCH_SIZE, 'luong')
sample_x = tf.random.uniform((BATCH_SIZE, max_length_output))
decoder.attention_mechanism.setup_memory(sample_output)
initial_state = decoder.build_initial_state(BATCH_SIZE, [sample_h, sample_c], tf.float32)


sample_decoder_outputs = decoder(sample_x, initial_state)

print("Decoder Outputs Shape: ", sample_decoder_outputs.rnn_output.shape)
Decoder Outputs Shape:  (64, 10, 4936)

Define the optimizer and the loss function

optimizer = tf.keras.optimizers.Adam()


def loss_function(real, pred):
  # real shape = (BATCH_SIZE, max_length_output)
  # pred shape = (BATCH_SIZE, max_length_output, tar_vocab_size )
  cross_entropy = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True, reduction='none')
  loss = cross_entropy(y_true=real, y_pred=pred)
  mask = tf.logical_not(tf.math.equal(real,0))   #output 0 for y=0 else output 1
  mask = tf.cast(mask, dtype=loss.dtype)  
  loss = mask* loss
  loss = tf.reduce_mean(loss)
  return loss

Checkpoints (Object-based saving)

checkpoint_dir = './training_checkpoints'
checkpoint_prefix = os.path.join(checkpoint_dir, "ckpt")
checkpoint = tf.train.Checkpoint(optimizer=optimizer,
                                 encoder=encoder,
                                 decoder=decoder)

One train_step operations

@tf.function
def train_step(inp, targ, enc_hidden):
  loss = 0

  with tf.GradientTape() as tape:
    enc_output, enc_h, enc_c = encoder(inp, enc_hidden)


    dec_input = targ[ : , :-1 ] # Ignore <end> token
    real = targ[ : , 1: ]         # ignore <start> token

    # Set the AttentionMechanism object with encoder_outputs
    decoder.attention_mechanism.setup_memory(enc_output)

    # Create AttentionWrapperState as initial_state for decoder
    decoder_initial_state = decoder.build_initial_state(BATCH_SIZE, [enc_h, enc_c], tf.float32)
    pred = decoder(dec_input, decoder_initial_state)
    logits = pred.rnn_output
    loss = loss_function(real, logits)

  variables = encoder.trainable_variables + decoder.trainable_variables
  gradients = tape.gradient(loss, variables)
  optimizer.apply_gradients(zip(gradients, variables))

  return loss

Train the model

EPOCHS = 10

for epoch in range(EPOCHS):
  start = time.time()

  enc_hidden = encoder.initialize_hidden_state()
  total_loss = 0
  # print(enc_hidden[0].shape, enc_hidden[1].shape)

  for (batch, (inp, targ)) in enumerate(train_dataset.take(steps_per_epoch)):
    batch_loss = train_step(inp, targ, enc_hidden)
    total_loss += batch_loss

    if batch % 100 == 0:
      print('Epoch {} Batch {} Loss {:.4f}'.format(epoch + 1,
                                                   batch,
                                                   batch_loss.numpy()))
  # saving (checkpoint) the model every 2 epochs
  if (epoch + 1) % 2 == 0:
    checkpoint.save(file_prefix = checkpoint_prefix)

  print('Epoch {} Loss {:.4f}'.format(epoch + 1,
                                      total_loss / steps_per_epoch))
  print('Time taken for 1 epoch {} sec\n'.format(time.time() - start))
Epoch 1 Batch 0 Loss 5.1692
Epoch 1 Batch 100 Loss 2.2288
Epoch 1 Batch 200 Loss 1.9930
Epoch 1 Batch 300 Loss 1.7783
Epoch 1 Loss 1.6975
Time taken for 1 epoch 37.26002788543701 sec

Epoch 2 Batch 0 Loss 1.6408
Epoch 2 Batch 100 Loss 1.5767
Epoch 2 Batch 200 Loss 1.4054
Epoch 2 Batch 300 Loss 1.3755
Epoch 2 Loss 1.1412
Time taken for 1 epoch 30.0094051361084 sec

Epoch 3 Batch 0 Loss 1.0296
Epoch 3 Batch 100 Loss 1.0306
Epoch 3 Batch 200 Loss 1.0675
Epoch 3 Batch 300 Loss 0.9574
Epoch 3 Loss 0.8037
Time taken for 1 epoch 28.983767986297607 sec

Epoch 4 Batch 0 Loss 0.5923
Epoch 4 Batch 100 Loss 0.7533
Epoch 4 Batch 200 Loss 0.7397
Epoch 4 Batch 300 Loss 0.6779
Epoch 4 Loss 0.5419
Time taken for 1 epoch 29.649972200393677 sec

Epoch 5 Batch 0 Loss 0.4320
Epoch 5 Batch 100 Loss 0.4349
Epoch 5 Batch 200 Loss 0.4686
Epoch 5 Batch 300 Loss 0.4748
Epoch 5 Loss 0.3827
Time taken for 1 epoch 29.06334638595581 sec

Epoch 6 Batch 0 Loss 0.3422
Epoch 6 Batch 100 Loss 0.3052
Epoch 6 Batch 200 Loss 0.3288
Epoch 6 Batch 300 Loss 0.3216
Epoch 6 Loss 0.2814
Time taken for 1 epoch 29.57170796394348 sec

Epoch 7 Batch 0 Loss 0.2129
Epoch 7 Batch 100 Loss 0.2382
Epoch 7 Batch 200 Loss 0.2406
Epoch 7 Batch 300 Loss 0.2792
Epoch 7 Loss 0.2162
Time taken for 1 epoch 28.95500087738037 sec

Epoch 8 Batch 0 Loss 0.2073
Epoch 8 Batch 100 Loss 0.2095
Epoch 8 Batch 200 Loss 0.1962
Epoch 8 Batch 300 Loss 0.1879
Epoch 8 Loss 0.1794
Time taken for 1 epoch 29.70877432823181 sec

Epoch 9 Batch 0 Loss 0.1517
Epoch 9 Batch 100 Loss 0.2231
Epoch 9 Batch 200 Loss 0.2203
Epoch 9 Batch 300 Loss 0.2282
Epoch 9 Loss 0.1496
Time taken for 1 epoch 29.20821261405945 sec

Epoch 10 Batch 0 Loss 0.1204
Epoch 10 Batch 100 Loss 0.1370
Epoch 10 Batch 200 Loss 0.1778
Epoch 10 Batch 300 Loss 0.2069
Epoch 10 Loss 0.1316
Time taken for 1 epoch 29.576894283294678 sec

Use tf-addons BasicDecoder for decoding

def evaluate_sentence(sentence):
  sentence = dataset_creator.preprocess_sentence(sentence)

  inputs = [inp_lang.word_index[i] for i in sentence.split(' ')]
  inputs = tf.keras.preprocessing.sequence.pad_sequences([inputs],
                                                          maxlen=max_length_input,
                                                          padding='post')
  inputs = tf.convert_to_tensor(inputs)
  inference_batch_size = inputs.shape[0]
  result = ''

  enc_start_state = [tf.zeros((inference_batch_size, units)), tf.zeros((inference_batch_size,units))]
  enc_out, enc_h, enc_c = encoder(inputs, enc_start_state)

  dec_h = enc_h
  dec_c = enc_c

  start_tokens = tf.fill([inference_batch_size], targ_lang.word_index['<start>'])
  end_token = targ_lang.word_index['<end>']

  greedy_sampler = tfa.seq2seq.GreedyEmbeddingSampler()

  # Instantiate BasicDecoder object
  decoder_instance = tfa.seq2seq.BasicDecoder(cell=decoder.rnn_cell, sampler=greedy_sampler, output_layer=decoder.fc)
  # Setup Memory in decoder stack
  decoder.attention_mechanism.setup_memory(enc_out)

  # set decoder_initial_state
  decoder_initial_state = decoder.build_initial_state(inference_batch_size, [enc_h, enc_c], tf.float32)


  ### Since the BasicDecoder wraps around Decoder's rnn cell only, you have to ensure that the inputs to BasicDecoder 
  ### decoding step is output of embedding layer. tfa.seq2seq.GreedyEmbeddingSampler() takes care of this. 
  ### You only need to get the weights of embedding layer, which can be done by decoder.embedding.variables[0] and pass this callabble to BasicDecoder's call() function

  decoder_embedding_matrix = decoder.embedding.variables[0]

  outputs, _, _ = decoder_instance(decoder_embedding_matrix, start_tokens = start_tokens, end_token= end_token, initial_state=decoder_initial_state)
  return outputs.sample_id.numpy()

def translate(sentence):
  result = evaluate_sentence(sentence)
  print(result)
  result = targ_lang.sequences_to_texts(result)
  print('Input: %s' % (sentence))
  print('Predicted translation: {}'.format(result))

Restore the latest checkpoint and test

# restoring the latest checkpoint in checkpoint_dir
checkpoint.restore(tf.train.latest_checkpoint(checkpoint_dir))
<tensorflow.python.training.tracking.util.CheckpointLoadStatus at 0x7f9499417390>
translate(u'hace mucho frio aqui.')
[[ 11  12  49 224  40   4   3]]
Input: hace mucho frio aqui.
Predicted translation: ['it s very pretty here . <end>']
translate(u'esta es mi vida.')
[[ 20   9  22 190   4   3]]
Input: esta es mi vida.
Predicted translation: ['this is my life . <end>']
translate(u'¿todavia estan en casa?')
[[25  7 90  8  3]]
Input: ¿todavia estan en casa?
Predicted translation: ['are you home ? <end>']
# wrong translation
translate(u'trata de averiguarlo.')
[[126  16 892  11  75   4   3]]
Input: trata de averiguarlo.
Predicted translation: ['try to figure it out . <end>']

Use tf-addons BeamSearchDecoder

def beam_evaluate_sentence(sentence, beam_width=3):
  sentence = dataset_creator.preprocess_sentence(sentence)

  inputs = [inp_lang.word_index[i] for i in sentence.split(' ')]
  inputs = tf.keras.preprocessing.sequence.pad_sequences([inputs],
                                                          maxlen=max_length_input,
                                                          padding='post')
  inputs = tf.convert_to_tensor(inputs)
  inference_batch_size = inputs.shape[0]
  result = ''

  enc_start_state = [tf.zeros((inference_batch_size, units)), tf.zeros((inference_batch_size,units))]
  enc_out, enc_h, enc_c = encoder(inputs, enc_start_state)

  dec_h = enc_h
  dec_c = enc_c

  start_tokens = tf.fill([inference_batch_size], targ_lang.word_index['<start>'])
  end_token = targ_lang.word_index['<end>']

  # From official documentation
  # NOTE If you are using the BeamSearchDecoder with a cell wrapped in AttentionWrapper, then you must ensure that:
  # The encoder output has been tiled to beam_width via tfa.seq2seq.tile_batch (NOT tf.tile).
  # The batch_size argument passed to the get_initial_state method of this wrapper is equal to true_batch_size * beam_width.
  # The initial state created with get_initial_state above contains a cell_state value containing properly tiled final state from the encoder.

  enc_out = tfa.seq2seq.tile_batch(enc_out, multiplier=beam_width)
  decoder.attention_mechanism.setup_memory(enc_out)
  print("beam_with * [batch_size, max_length_input, rnn_units] :  3 * [1, 16, 1024]] :", enc_out.shape)

  # set decoder_inital_state which is an AttentionWrapperState considering beam_width
  hidden_state = tfa.seq2seq.tile_batch([enc_h, enc_c], multiplier=beam_width)
  decoder_initial_state = decoder.rnn_cell.get_initial_state(batch_size=beam_width*inference_batch_size, dtype=tf.float32)
  decoder_initial_state = decoder_initial_state.clone(cell_state=hidden_state)

  # Instantiate BeamSearchDecoder
  decoder_instance = tfa.seq2seq.BeamSearchDecoder(decoder.rnn_cell,beam_width=beam_width, output_layer=decoder.fc)
  decoder_embedding_matrix = decoder.embedding.variables[0]

  # The BeamSearchDecoder object's call() function takes care of everything.
  outputs, final_state, sequence_lengths = decoder_instance(decoder_embedding_matrix, start_tokens=start_tokens, end_token=end_token, initial_state=decoder_initial_state)
  # outputs is tfa.seq2seq.FinalBeamSearchDecoderOutput object. 
  # The final beam predictions are stored in outputs.predicted_id
  # outputs.beam_search_decoder_output is a tfa.seq2seq.BeamSearchDecoderOutput object which keep tracks of beam_scores and parent_ids while performing a beam decoding step
  # final_state = tfa.seq2seq.BeamSearchDecoderState object.
  # Sequence Length = [inference_batch_size, beam_width] details the maximum length of the beams that are generated


  # outputs.predicted_id.shape = (inference_batch_size, time_step_outputs, beam_width)
  # outputs.beam_search_decoder_output.scores.shape = (inference_batch_size, time_step_outputs, beam_width)
  # Convert the shape of outputs and beam_scores to (inference_batch_size, beam_width, time_step_outputs)
  final_outputs = tf.transpose(outputs.predicted_ids, perm=(0,2,1))
  beam_scores = tf.transpose(outputs.beam_search_decoder_output.scores, perm=(0,2,1))

  return final_outputs.numpy(), beam_scores.numpy()
def beam_translate(sentence):
  result, beam_scores = beam_evaluate_sentence(sentence)
  print(result.shape, beam_scores.shape)
  for beam, score in zip(result, beam_scores):
    print(beam.shape, score.shape)
    output = targ_lang.sequences_to_texts(beam)
    output = [a[:a.index('<end>')] for a in output]
    beam_score = [a.sum() for a in score]
    print('Input: %s' % (sentence))
    for i in range(len(output)):
      print('{} Predicted translation: {}  {}'.format(i+1, output[i], beam_score[i]))
beam_translate(u'hace mucho frio aqui.')
beam_with * [batch_size, max_length_input, rnn_units] :  3 * [1, 16, 1024]] : (3, 16, 1024)
(1, 3, 7) (1, 3, 7)
(3, 7) (3, 7)
Input: hace mucho frio aqui.
1 Predicted translation: it s very pretty here .   -4.117094039916992
2 Predicted translation: it s very cold here .   -14.85302734375
3 Predicted translation: it s very pretty news .   -25.59416389465332
beam_translate(u'¿todavia estan en casa?')
beam_with * [batch_size, max_length_input, rnn_units] :  3 * [1, 16, 1024]] : (3, 16, 1024)
(1, 3, 7) (1, 3, 7)
(3, 7) (3, 7)
Input: ¿todavia estan en casa?
1 Predicted translation: are you still home ?   -4.036754131317139
2 Predicted translation: are you still at home ?   -15.306867599487305
3 Predicted translation: are you still go home ?   -20.533388137817383