感谢您关注 Google I/O 大会。欢迎点播观看所有专题演讲点播观看

TensorFlow 简介

借助 TensorFlow,初学者和专家可以轻松创建适用于桌面、移动、Web 和云环境的机器学习模型。请参阅以下几部分,了解如何开始使用。

TensorFlow

通过面向初学者和专家的教程学习 TensorFlow 基础知识,并运用这些知识创建下一个机器学习项目。

针对 Web

通过 TensorFlow.js 使用 JavaScript 创建新的机器学习模型和部署现有模型。

针对移动设备和边缘设备

使用 TensorFlow Lite 在 Android、iOS、Edge TPU 和 Raspberry Pi 等移动设备和嵌入式设备上进行推断。

针对生产

使用 TFX 部署可用于生产环境的机器学习流水线,以用于训练和推断。

端到端机器学习平台

准备和加载数据以获得成功的机器学习结果

数据可能是决定机器学习工作能否成功的最重要因素。 TensorFlow 提供了多种数据工具,可以帮助您大规模整合、清理和预处理数据:

Additionally, responsible AI tools help you uncover and eliminate bias in your data to produce fair, ethical outcomes from your models.

利用 TensorFlow 生态系统构建和微调模型

Explore an entire ecosystem built on the Core framework that streamlines model construction, training, and export. TensorFlow supports distributed training, immediate model iteration and easy debugging with Keras, and much more. Tools like Model Analysis and TensorBoard help you track development and improvement through your model’s lifecycle.

To help you get started, find collections of pre-trained models at TensorFlow Hub from Google and the community, or implementations of state-of-the art research models in the Model Garden. These libraries of high level components allow you to take powerful models, and fine-tune them on new data or customize them to perform new tasks.

在设备上、浏览器中、本地或云端部署模型

TensorFlow provides robust capabilities to deploy your models on any environment - servers, edge devices, browsers, mobile, microcontrollers, CPUs, GPUs, FPGAs. TensorFlow Serving can run ML models at production scale on the most advanced processors in the world, including Google's custom Tensor Processing Units (TPUs).

If you need to analyze data close to its source to reduce latency and improve data privacy, the TensorFlow Lite framework lets you run models on mobile devices, edge computing devices, and even microcontrollers, and the TensorFlow.js framework lets you run machine learning with just a web browser.

实现适用于生产型机器学习的 MLOps

The TensorFlow platform helps you implement best practices for data automation, model tracking, performance monitoring, and model retraining.

Using production-level tools to automate and track model training over the lifetime of a product, service, or business process is critical to success. TFX provides software frameworks and tooling for full MLOps deployments, detecting issues as your data and models evolve over time.

想要扩充您的机器学习知识面?

如果您基本了解机器学习的原理和核心概念,TensorFlow 就会更易于使用。学习并运用机器学习的基本做法以培养您的技能。

学习机器学习知识

从精选课程着手,提升您在机器学习基础领域的技能。