使用集合让一切井井有条
根据您的偏好保存内容并对其进行分类。
本部分内容旨在指导刚接触机器学习的开发者顺利完成其机器学习之旅的起始学习阶段。您会发现很多课程都采用了 TensorFlow,不过,这些知识也可以套用到其他机器学习框架中。
第 1 步:了解什么是机器学习
面向编码人员的 AI 和机器学习知识
由 Laurence Moroney 编著
这本入门书籍从代码的角度介绍了如何实现最常见的机器学习场景,例如计算机视觉、自然语言处理 (NLP),以及网络、移动、云端和嵌入式运行时的序列建模。
第 2 步:基础知识延伸
DeepLearning.AI
《TensorFlow 开发者》专项课程
在这个由 TensorFlow 开发者讲授且由 4 门课程组成的专项课程中,您将了解开发者在 TensorFlow 中构建由 AI 提供支持且可扩容的算法时使用的工具和软件。
[null,null,[],[],[],null,["# Basics of machine learning\n\n[TensorFlow](/tutorials) › [Resources](/resources/models-datasets) › [Learn ML](/resources/learn-ml) › [Guide](/resources/learn-ml/basics-of-machine-learning) › \n\nBasics of machine learning with TensorFlow\n==========================================\n\nThis curriculum is for people who are:\n\n- New to ML, but who have an intermediate programming background \nThis content is intended to guide developers new to ML through the beginning stages of their ML journey. You will see that many of the resources use TensorFlow, however, the knowledge is transferable to other machine learning frameworks. \n\nStep 1: Understand what ML is all about\n---------------------------------------\n\nTensorFlow 2.0 is designed to make building neural networks for machine learning easy, which is why TensorFlow 2.0 uses an API called Keras. The book [Deep Learning with Python](https://www.manning.com/books/deep-learning-with-python-second-edition) by Francois Chollet, creator of Keras, is a great place to get started. Read chapters 1-4 to understand the fundamentals of ML from a programmer's perspective. The second half of the book delves into areas like Computer Vision, Natural Language Processing, Generative Deep Learning, and more. Don't worry if these topics are too advanced right now as they will make more sense in due time. \n[AI and Machine Learning for Coders](https://www.oreilly.com/library/view/ai-and-machine/9781492078180/) \nby Laurence Moroney \nThis introductory book provides a code-first approach to learn how to implement the most common ML scenarios, such as computer vision, natural language processing (NLP), and sequence modeling for web, mobile, cloud, and embedded runtimes. \n[View book](https://www.oreilly.com/library/view/ai-and-machine/9781492078180/) \nCode \nTheory \nBuild \n[Deep Learning with Python](https://www.manning.com/books/deep-learning-with-python-second-edition) \nby Francois Chollet \nThis book is a practical, hands-on introduction to Deep Learning with Keras. \n[View book](https://www.manning.com/books/deep-learning-with-python-second-edition) \nCode \nTheory \nBuild \n\n##### ⬆ Or ⬇\n\nTake an online course such as Coursera's [Introduction to TensorFlow](https://www.coursera.org/learn/introduction-tensorflow) or Udacity's [Intro to TensorFlow for Deep Learning](https://www.udacity.com/course/intro-to-tensorflow-for-deep-learning--ud187), both of which cover the same fundamentals as Francois's book. You may also find [these videos](https://www.youtube.com/playlist?list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi) from 3blue1brown helpful, which give you quick explanations about how neural networks work on a mathematical level.\n\nCompleting this step will give you the foundations of how ML works, preparing you to go deeper. \n\nDeepLearning.AI\n[Intro to TensorFlow for AI, ML, and Deep Learning](https://www.coursera.org/learn/introduction-tensorflow) \nDeveloped in collaboration with the TensorFlow team, this course is part of the TensorFlow Developer Specialization and will teach you best practices for using TensorFlow. \n[View course](https://www.coursera.org/learn/introduction-tensorflow) \nCode \nBuild \n[Intro to TensorFlow for Deep Learning](https://www.udacity.com/course/intro-to-tensorflow-for-deep-learning--ud187) \nIn this online course developed by the TensorFlow team and Udacity, you'll learn how to build deep learning applications with TensorFlow. \nFree [View course](https://www.udacity.com/course/intro-to-tensorflow-for-deep-learning--ud187) \nCode \nMath \nTheory \nBuild \n\nStep 2: Beyond the basics\n-------------------------\n\nTake the [TensorFlow Developer Specialization](https://www.coursera.org/specializations/tensorflow-in-practice), which takes you beyond the basics into introductory Computer Vision, NLP, and Sequence modelling.\n\nCompleting this step continues your introduction, and teaches you how to use TensorFlow to build basic models for a variety of scenarios, including image classification, understanding sentiment in text, generative algorithms, and more. \n\nDeepLearning.AI\n[TensorFlow Developer Specialization](https://www.coursera.org/specializations/tensorflow-in-practice) \nIn this four-course Specialization taught by a TensorFlow developer, you'll explore the tools and software developers use to build scalable AI-powered algorithms in TensorFlow. \n[View course](https://www.coursera.org/specializations/tensorflow-in-practice) \nCode \nBuild \n\nStep 3: Practice\n----------------\n\nTry some of our [TensorFlow Core tutorials](/tutorials), which will allow you to practice the concepts you learned in steps 1 and 2. When you're done, try some of the more advanced exercises.\n\nCompleting this step will improve your understanding of the main concepts and scenarios you will encounter when building ML models.\n\nStep 4: Go deeper with TensorFlow\n---------------------------------\n\nNow it's time to go back to [Deep Learning with Python](https://www.manning.com/books/deep-learning-with-python-second-edition) by Francois and finish chapters 5-9. You should also read the book [Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow](https://www.oreilly.com/library/view/hands-on-machine-learning/9781492032632/), by Aurelien Geron. This book introduces ML and deep learning using TensorFlow 2.0.\n\nCompleting this step will round out your introductory knowledge of ML, including expanding the platform to meet your needs. \n[Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow](https://www.oreilly.com/library/view/hands-on-machine-learning/9781492032632/) \nby Aurélien Géron \nUsing concrete examples, minimal theory, and two production-ready Python frameworks---Scikit-Learn and TensorFlow---this book helps you gain an intuitive understanding of the concepts and tools for building intelligent systems. \n[View book](https://www.oreilly.com/library/view/hands-on-machine-learning/9781492032632/) \nCode \nTheory \nBuild \n[Next\nTheoretical and advanced machine learning with TensorFlow](/resources/learn-ml/theoretical-and-advanced-machine-learning) \n\nLearn, develop and build with TensorFlow\n----------------------------------------\n\n[Get started](/learn)"]]