New! Use Simple ML for Sheets to apply machine learning to the data in your Google Sheets
Read More
TensorFlow 决策森林教程
使用集合让一切井井有条
根据您的偏好保存内容并对其进行分类。
您可以学习以下 Colab:
初级 Colab:了解模型训练、评估和导出的相关基础知识。
中级 Colab:如何使用文本并结合使用决策森林与神经网络。
高级 Colab:如何直接检查并创建模型结构。
如未另行说明,那么本页面中的内容已根据知识共享署名 4.0 许可获得了许可,并且代码示例已根据 Apache 2.0 许可获得了许可。有关详情,请参阅 Google 开发者网站政策。Java 是 Oracle 和/或其关联公司的注册商标。
最后更新时间 (UTC):2021-09-01。
[null,null,["最后更新时间 (UTC):2021-09-01。"],[],[],null,["# TensorFlow Decision Forests tutorials\n\n\u003cbr /\u003e\n\nThe following notebooks are available:\n\n- [Beginner Colab](/decision_forests/tutorials/beginner_colab): Learn about the basic about model training, evaluation and exportation.\n- [Ranking Colab](/decision_forests/tutorials/ranking_colab): Learn about ranking with decision forests.\n- [Intermediate Colab](/decision_forests/tutorials/intermediate_colab): How to consume text and combine decision forest with neural networks.\n- [Advanced Colab](/decision_forests/tutorials/advanced_colab): How to inspect and create model structures directly.\n- [Uplifting Colab](/decision_forests/tutorials/uplift_colab): Learn about uplift modeling with decision forests.\n- [Model composition Colab](/decision_forests/tutorials/model_composition_colab): How to compose decision forests and neural networks together.\n- [Proximities and Prototypes with Random Forests](/decision_forests/tutorials/proximities_colab): Measure the distance between tabular examples and use it to understand a model and its predictions.\n- [Automatic hyper-parameter tuning](/decision_forests/tutorials/automatic_tuning_colab): Automatically select the best hyper-parameters for a model.\n- [Making predictions](/decision_forests/tutorials/predict_colab): List of options to make predictions with a model."]]