View on TensorFlow.org | Run in Google Colab | View source on GitHub | Download notebook |
Overview
In computer vision, the selected color space could have a significant the performance of the model. While RGB
is the most common color space, in manay situations the model performs better when switching to alternative color spaces such as YUV
, YCbCr
, XYZ (CIE)
, etc.
The tensorflow-io
package provides a list of color space conversions APIs that can be used to prepare and augment the image data.
Setup
Install required Packages, and restart runtime
pip install -q tensorflow-io
Download the sample image
The image example used in this tutorial is a cat in the snow, though it could be replaced by any JPEG images.
The following will download the image and save to local disk as sample.jpg
:
curl -o sample.jpg -L https://storage.googleapis.com/download.tensorflow.org/example_images/320px-Felis_catus-cat_on_snow.jpg
ls -ls sample.jpg
% Total % Received % Xferd Average Speed Time Time Time Current Dload Upload Total Spent Left Speed 100 17858 100 17858 0 0 235k 0 --:--:-- --:--:-- --:--:-- 235k 20 -rw-rw-r-- 1 kbuilder kokoro 17858 Oct 27 16:33 sample.jpg
Usage
Read Image File
Read and decode the image into a uint8
Tensor of shape (213, 320, 3)
import tensorflow as tf
import tensorflow_io as tfio
image = tf.image.decode_jpeg(tf.io.read_file('sample.jpg'))
print(image.shape, image.dtype)
(213, 320, 3) <dtype: 'uint8'>
The image can be displayed by:
import matplotlib.pyplot as plt
plt.figure()
plt.imshow(image)
plt.axis('off')
plt.show()
Convert RGB to Grayscale
An RGB
image can be converted to Grayscale
to reduce the channel from 3 to 1 with tfio.experimental.color.rgb_to_grayscale
:
grayscale = tfio.experimental.color.rgb_to_grayscale(image)
print(grayscale.shape, grayscale.dtype)
# use tf.squeeze to remove last channel for plt.imshow to display:
plt.figure()
plt.imshow(tf.squeeze(grayscale, axis=-1), cmap='gray')
plt.axis('off')
plt.show()
(213, 320, 1) <dtype: 'uint8'>
Convert RGB to BGR
Some image software and camera manufacturors might prefer BGR
, which can be obtained through tfio.experimental.color.rgb_to_bgr
:
bgr = tfio.experimental.color.rgb_to_bgr(image)
print(bgr.shape, bgr.dtype)
plt.figure()
plt.imshow(bgr)
plt.axis('off')
plt.show()
(213, 320, 3) <dtype: 'uint8'>
Convert RGB to CIE XYZ
CIE XYZ
(or CIE 1931 XYZ
is a common color space used in many image processing programs. The following is the conversion from RGB to CIE XYZ
through tfio.experimental.color.rgb_to_xyz
. Note tfio.experimental.color.rgb_to_xyz
assumes floating point input in the range of [0, 1]
so additional pre-processing is needed:
# convert to float32
image_float32 = tf.cast(image, tf.float32) / 255.0
xyz_float32 = tfio.experimental.color.rgb_to_xyz(image_float32)
# convert back uint8
xyz = tf.cast(xyz_float32 * 255.0, tf.uint8)
print(xyz.shape, xyz.dtype)
plt.figure()
plt.imshow(xyz)
plt.axis('off')
plt.show()
(213, 320, 3) <dtype: 'uint8'>
Convert RGB to YCbCr
Finally, YCbCr
is the default color space in many video systems. Converting to YCbCr
could be done through tfio.experimental.color.rgb_to_ycbcr
:
ycbcr = tfio.experimental.color.rgb_to_ycbcr(image)
print(ycbcr.shape, ycbcr.dtype)
plt.figure()
plt.imshow(ycbcr, cmap='gray')
plt.axis('off')
plt.show()
(213, 320, 3) <dtype: 'uint8'>
What is more interesting, though, is that YCbCr
could be decomposed into Y'
(luma), Cb
(blue-difference chroma), and Cr
(red-difference chroma) components with each component carry perceptually meaningful information:
y, cb, cr = ycbcr[:,:,0], ycbcr[:,:,1], ycbcr[:,:,2]
# Y' component
plt.figure()
plt.imshow(y, cmap='gray')
plt.axis('off')
plt.show()
# Cb component
plt.figure()
plt.imshow(cb, cmap='gray')
plt.axis('off')
plt.show()
# Cr component
plt.figure()
plt.imshow(cr, cmap='gray')
plt.axis('off')
plt.show()