Ver en TensorFlow.org | Ejecutar en Google Colab | Ver fuente en GitHub | Descargar libreta |
Este tutorial demuestra cómo generar texto utilizando un RNN basado en caracteres. Trabajará con un conjunto de datos de los escritos de Shakespeare de La eficacia irrazonable de las redes neuronales recurrentes de Andrej Karpathy. Dada una secuencia de caracteres de estos datos ("Shakespear"), entrene un modelo para predecir el siguiente carácter en la secuencia ("e"). Se pueden generar secuencias de texto más largas llamando al modelo repetidamente.
Este tutorial incluye código ejecutable implementado usando tf.keras y ejecución entusiasta . El siguiente es el resultado de muestra cuando el modelo en este tutorial se entrenó durante 30 épocas y comenzó con el indicador "Q":
QUEENE: I had thought thou hadst a Roman; for the oracle, Thus by All bids the man against the word, Which are so weak of care, by old care done; Your children were in your holy love, And the precipitation through the bleeding throne. BISHOP OF ELY: Marry, and will, my lord, to weep in such a one were prettiest; Yet now I was adopted heir Of the world's lamentable day, To watch the next way with his father with his face? ESCALUS: The cause why then we are all resolved more sons. VOLUMNIA: O, no, no, no, no, no, no, no, no, no, no, no, no, no, no, no, no, no, no, no, no, it is no sin it should be dead, And love and pale as any will to that word. QUEEN ELIZABETH: But how long have I heard the soul for this world, And show his hands of life be proved to stand. PETRUCHIO: I say he look'd on, if I must be content To stay him from the fatal of our country's bliss. His lordship pluck'd from this sentence then for prey, And then let us twain, being the moon, were she such a case as fills m
Si bien algunas de las oraciones son gramaticales, la mayoría no tiene sentido. El modelo no ha aprendido el significado de las palabras, pero considere:
El modelo está basado en personajes. Cuando comenzó el entrenamiento, el modelo no sabía cómo deletrear una palabra en inglés, ni siquiera que las palabras fueran una unidad de texto.
La estructura de la salida se asemeja a una obra de teatro: los bloques de texto generalmente comienzan con el nombre de un hablante, en todas las letras mayúsculas, similar al conjunto de datos.
Como se demuestra a continuación, el modelo se entrena en pequeños lotes de texto (100 caracteres cada uno) y aún puede generar una secuencia de texto más larga con una estructura coherente.
Configuración
Importar TensorFlow y otras bibliotecas
import tensorflow as tf
import numpy as np
import os
import time
Descargar el conjunto de datos de Shakespeare
Cambie la siguiente línea para ejecutar este código en sus propios datos.
path_to_file = tf.keras.utils.get_file('shakespeare.txt', 'https://storage.googleapis.com/download.tensorflow.org/data/shakespeare.txt')
Downloading data from https://storage.googleapis.com/download.tensorflow.org/data/shakespeare.txt 1122304/1115394 [==============================] - 0s 0us/step 1130496/1115394 [==============================] - 0s 0us/step
Leer los datos
Primero, mira en el texto:
# Read, then decode for py2 compat.
text = open(path_to_file, 'rb').read().decode(encoding='utf-8')
# length of text is the number of characters in it
print(f'Length of text: {len(text)} characters')
Length of text: 1115394 charactersde posición7
# Take a look at the first 250 characters in text
print(text[:250])
First Citizen: Before we proceed any further, hear me speak. All: Speak, speak. First Citizen: You are all resolved rather to die than to famish? All: Resolved. resolved. First Citizen: First, you know Caius Marcius is chief enemy to the people.
# The unique characters in the file
vocab = sorted(set(text))
print(f'{len(vocab)} unique characters')
65 unique characters
Procesar el texto
Vectorizar el texto
Antes del entrenamiento, debe convertir las cadenas en una representación numérica.
La capa tf.keras.layers.StringLookup
puede convertir cada carácter en un ID numérico. Solo necesita que el texto se divida en tokens primero.
example_texts = ['abcdefg', 'xyz']
chars = tf.strings.unicode_split(example_texts, input_encoding='UTF-8')
chars
<tf.RaggedTensor [[b'a', b'b', b'c', b'd', b'e', b'f', b'g'], [b'x', b'y', b'z']]>
Ahora cree la capa tf.keras.layers.StringLookup
:
ids_from_chars = tf.keras.layers.StringLookup(
vocabulary=list(vocab), mask_token=None)
Se convierte de tokens a identificaciones de personajes:
ids = ids_from_chars(chars)
ids
<tf.RaggedTensor [[40, 41, 42, 43, 44, 45, 46], [63, 64, 65]]>
Dado que el objetivo de este tutorial es generar texto, también será importante invertir esta representación y recuperar cadenas legibles por humanos a partir de ella. Para esto, puede usar tf.keras.layers.StringLookup(..., invert=True)
.
chars_from_ids = tf.keras.layers.StringLookup(
vocabulary=ids_from_chars.get_vocabulary(), invert=True, mask_token=None)
Esta capa recupera los caracteres de los vectores de ID y los devuelve como un tf.RaggedTensor
de caracteres:
chars = chars_from_ids(ids)
chars
<tf.RaggedTensor [[b'a', b'b', b'c', b'd', b'e', b'f', b'g'], [b'x', b'y', b'z']]>
Puede tf.strings.reduce_join
para volver a unir los caracteres en cadenas.
tf.strings.reduce_join(chars, axis=-1).numpy()
array([b'abcdefg', b'xyz'], dtype=object)
def text_from_ids(ids):
return tf.strings.reduce_join(chars_from_ids(ids), axis=-1)
La tarea de predicción
Dado un carácter, o una secuencia de caracteres, ¿cuál es el próximo carácter más probable? Esta es la tarea para la que está entrenando al modelo. La entrada al modelo será una secuencia de caracteres, y usted entrena el modelo para predecir la salida: el siguiente carácter en cada paso de tiempo.
Dado que los RNN mantienen un estado interno que depende de los elementos vistos anteriormente, dados todos los caracteres computados hasta este momento, ¿cuál es el siguiente carácter?
Cree ejemplos y objetivos de capacitación
A continuación, divida el texto en secuencias de ejemplo. Cada secuencia de entrada contendrá caracteres seq_length
del texto.
Para cada secuencia de entrada, los objetivos correspondientes contienen la misma longitud de texto, excepto que se desplaza un carácter a la derecha.
Así que divide el texto en partes de seq_length+1
. Por ejemplo, digamos que seq_length
es 4 y nuestro texto es "Hola". La secuencia de entrada sería "Hell" y la secuencia de destino "ello".
Para hacer esto, primero use la función tf.data.Dataset.from_tensor_slices
para convertir el vector de texto en una secuencia de índices de caracteres.
all_ids = ids_from_chars(tf.strings.unicode_split(text, 'UTF-8'))
all_ids
<tf.Tensor: shape=(1115394,), dtype=int64, numpy=array([19, 48, 57, ..., 46, 9, 1])>
ids_dataset = tf.data.Dataset.from_tensor_slices(all_ids)
for ids in ids_dataset.take(10):
print(chars_from_ids(ids).numpy().decode('utf-8'))
F i r s t C i t i
seq_length = 100
examples_per_epoch = len(text)//(seq_length+1)
El método por batch
le permite convertir fácilmente estos caracteres individuales en secuencias del tamaño deseado.
sequences = ids_dataset.batch(seq_length+1, drop_remainder=True)
for seq in sequences.take(1):
print(chars_from_ids(seq))
tf.Tensor( [b'F' b'i' b'r' b's' b't' b' ' b'C' b'i' b't' b'i' b'z' b'e' b'n' b':' b'\n' b'B' b'e' b'f' b'o' b'r' b'e' b' ' b'w' b'e' b' ' b'p' b'r' b'o' b'c' b'e' b'e' b'd' b' ' b'a' b'n' b'y' b' ' b'f' b'u' b'r' b't' b'h' b'e' b'r' b',' b' ' b'h' b'e' b'a' b'r' b' ' b'm' b'e' b' ' b's' b'p' b'e' b'a' b'k' b'.' b'\n' b'\n' b'A' b'l' b'l' b':' b'\n' b'S' b'p' b'e' b'a' b'k' b',' b' ' b's' b'p' b'e' b'a' b'k' b'.' b'\n' b'\n' b'F' b'i' b'r' b's' b't' b' ' b'C' b'i' b't' b'i' b'z' b'e' b'n' b':' b'\n' b'Y' b'o' b'u' b' '], shape=(101,), dtype=string) 2022-01-26 01:13:19.940550: W tensorflow/core/data/root_dataset.cc:200] Optimization loop failed: CANCELLED: Operation was cancelled
Es más fácil ver qué está haciendo esto si vuelve a unir los tokens en cadenas:
for seq in sequences.take(5):
print(text_from_ids(seq).numpy())
b'First Citizen:\nBefore we proceed any further, hear me speak.\n\nAll:\nSpeak, speak.\n\nFirst Citizen:\nYou ' b'are all resolved rather to die than to famish?\n\nAll:\nResolved. resolved.\n\nFirst Citizen:\nFirst, you k' b"now Caius Marcius is chief enemy to the people.\n\nAll:\nWe know't, we know't.\n\nFirst Citizen:\nLet us ki" b"ll him, and we'll have corn at our own price.\nIs't a verdict?\n\nAll:\nNo more talking on't; let it be d" b'one: away, away!\n\nSecond Citizen:\nOne word, good citizens.\n\nFirst Citizen:\nWe are accounted poor citi'
Para el entrenamiento, necesitará un conjunto de datos de (input, label)
pares. Donde input
y label
son secuencias. En cada paso de tiempo, la entrada es el carácter actual y la etiqueta es el siguiente carácter.
Aquí hay una función que toma una secuencia como entrada, la duplica y la cambia para alinear la entrada y la etiqueta para cada paso de tiempo:
def split_input_target(sequence):
input_text = sequence[:-1]
target_text = sequence[1:]
return input_text, target_text
split_input_target(list("Tensorflow"))
(['T', 'e', 'n', 's', 'o', 'r', 'f', 'l', 'o'], ['e', 'n', 's', 'o', 'r', 'f', 'l', 'o', 'w'])
dataset = sequences.map(split_input_target)
for input_example, target_example in dataset.take(1):
print("Input :", text_from_ids(input_example).numpy())
print("Target:", text_from_ids(target_example).numpy())
Input : b'First Citizen:\nBefore we proceed any further, hear me speak.\n\nAll:\nSpeak, speak.\n\nFirst Citizen:\nYou' Target: b'irst Citizen:\nBefore we proceed any further, hear me speak.\n\nAll:\nSpeak, speak.\n\nFirst Citizen:\nYou '
Crear lotes de entrenamiento
Usó tf.data
para dividir el texto en secuencias manejables. Pero antes de introducir estos datos en el modelo, debe mezclar los datos y empaquetarlos en lotes.
# Batch size
BATCH_SIZE = 64
# Buffer size to shuffle the dataset
# (TF data is designed to work with possibly infinite sequences,
# so it doesn't attempt to shuffle the entire sequence in memory. Instead,
# it maintains a buffer in which it shuffles elements).
BUFFER_SIZE = 10000
dataset = (
dataset
.shuffle(BUFFER_SIZE)
.batch(BATCH_SIZE, drop_remainder=True)
.prefetch(tf.data.experimental.AUTOTUNE))
dataset
<PrefetchDataset element_spec=(TensorSpec(shape=(64, 100), dtype=tf.int64, name=None), TensorSpec(shape=(64, 100), dtype=tf.int64, name=None))>
construir el modelo
Esta sección define el modelo como una subclase keras.Model
(para obtener más información, consulte Creación de nuevas capas y modelos a través de subclases ).
Este modelo tiene tres capas:
-
tf.keras.layers.Embedding
: La capa de entrada. Una tabla de búsqueda entrenable que asignará cada ID de carácter a un vector con dimensionesembedding_dim
; -
tf.keras.layers.GRU
: un tipo de RNN conunits=rnn_units
(también puede usar una capa LSTM aquí). -
tf.keras.layers.Dense
: la capa de salida, con salidasvocab_size
. Produce un logit por cada carácter del vocabulario. Estos son el log-verosimilitud de cada carácter según el modelo.
# Length of the vocabulary in chars
vocab_size = len(vocab)
# The embedding dimension
embedding_dim = 256
# Number of RNN units
rnn_units = 1024
class MyModel(tf.keras.Model):
def __init__(self, vocab_size, embedding_dim, rnn_units):
super().__init__(self)
self.embedding = tf.keras.layers.Embedding(vocab_size, embedding_dim)
self.gru = tf.keras.layers.GRU(rnn_units,
return_sequences=True,
return_state=True)
self.dense = tf.keras.layers.Dense(vocab_size)
def call(self, inputs, states=None, return_state=False, training=False):
x = inputs
x = self.embedding(x, training=training)
if states is None:
states = self.gru.get_initial_state(x)
x, states = self.gru(x, initial_state=states, training=training)
x = self.dense(x, training=training)
if return_state:
return x, states
else:
return x
model = MyModel(
# Be sure the vocabulary size matches the `StringLookup` layers.
vocab_size=len(ids_from_chars.get_vocabulary()),
embedding_dim=embedding_dim,
rnn_units=rnn_units)
Para cada carácter, el modelo busca la incrustación, ejecuta la GRU un paso de tiempo con la incrustación como entrada y aplica la capa densa para generar logits que predicen la probabilidad logarítmica del siguiente carácter:
Prueba el modelo
Ahora ejecute el modelo para ver que se comporta como se esperaba.
Primero verifique la forma de la salida:
for input_example_batch, target_example_batch in dataset.take(1):
example_batch_predictions = model(input_example_batch)
print(example_batch_predictions.shape, "# (batch_size, sequence_length, vocab_size)")
(64, 100, 66) # (batch_size, sequence_length, vocab_size)
En el ejemplo anterior, la longitud de secuencia de la entrada es 100
, pero el modelo se puede ejecutar en entradas de cualquier longitud:
model.summary()
Model: "my_model" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= embedding (Embedding) multiple 16896 gru (GRU) multiple 3938304 dense (Dense) multiple 67650 ================================================================= Total params: 4,022,850 Trainable params: 4,022,850 Non-trainable params: 0 _________________________________________________________________
Para obtener predicciones reales del modelo, debe muestrear la distribución de salida para obtener índices de caracteres reales. Esta distribución está definida por los logits sobre el vocabulario de caracteres.
Pruébelo para el primer ejemplo en el lote:
sampled_indices = tf.random.categorical(example_batch_predictions[0], num_samples=1)
sampled_indices = tf.squeeze(sampled_indices, axis=-1).numpy()
Esto nos da, en cada paso de tiempo, una predicción del siguiente índice de caracteres:
sampled_indices
array([29, 23, 11, 14, 42, 27, 56, 29, 14, 6, 9, 65, 22, 15, 34, 64, 44, 41, 11, 51, 10, 44, 42, 56, 13, 50, 1, 33, 45, 23, 28, 43, 12, 62, 45, 60, 43, 62, 38, 19, 50, 35, 19, 14, 60, 56, 10, 64, 39, 56, 2, 51, 63, 42, 39, 64, 43, 20, 20, 17, 40, 15, 52, 46, 7, 25, 34, 43, 11, 11, 31, 34, 38, 44, 22, 49, 23, 4, 27, 0, 31, 39, 5, 9, 43, 58, 33, 30, 49, 6, 63, 5, 50, 4, 6, 14, 62, 3, 7, 35])
Decodifique estos para ver el texto predicho por este modelo no entrenado:
print("Input:\n", text_from_ids(input_example_batch[0]).numpy())
print()
print("Next Char Predictions:\n", text_from_ids(sampled_indices).numpy())
Input: b":\nWherein the king stands generally condemn'd.\n\nBAGOT:\nIf judgement lie in them, then so do we,\nBeca" Next Char Predictions: b"PJ:AcNqPA'.zIBUyeb:l3ecq?k\nTfJOd;wfudwYFkVFAuq3yZq lxcZydGGDaBmg,LUd::RUYeIjJ\\(N[UNK]RZ&.dsTQj'x&k\\)'Aw!,V"
entrenar al modelo
En este punto, el problema se puede tratar como un problema de clasificación estándar. Dado el estado anterior de RNN y la entrada de este paso de tiempo, prediga la clase del siguiente carácter.
Adjunte un optimizador y una función de pérdida
La función de pérdida estándar tf.keras.losses.sparse_categorical_crossentropy
funciona en este caso porque se aplica en la última dimensión de las predicciones.
Debido a que su modelo devuelve logits, debe configurar el indicador from_logits
.
loss = tf.losses.SparseCategoricalCrossentropy(from_logits=True)
example_batch_mean_loss = loss(target_example_batch, example_batch_predictions)
print("Prediction shape: ", example_batch_predictions.shape, " # (batch_size, sequence_length, vocab_size)")
print("Mean loss: ", example_batch_mean_loss)
Prediction shape: (64, 100, 66) # (batch_size, sequence_length, vocab_size) Mean loss: tf.Tensor(4.1895466, shape=(), dtype=float32)
Un modelo recién inicializado no debería estar demasiado seguro de sí mismo, todos los logits de salida deberían tener magnitudes similares. Para confirmar esto puedes comprobar que la exponencial de la pérdida media es aproximadamente igual al tamaño del vocabulario. Una pérdida mucho mayor significa que el modelo está seguro de sus respuestas incorrectas y está mal inicializado:
tf.exp(example_batch_mean_loss).numpy()
65.99286
Configure el procedimiento de entrenamiento utilizando el método tf.keras.Model.compile
. Utilice tf.keras.optimizers.Adam
con argumentos predeterminados y la función de pérdida.
model.compile(optimizer='adam', loss=loss)
Configurar puntos de control
Use un tf.keras.callbacks.ModelCheckpoint
para asegurarse de que los puntos de control se guarden durante el entrenamiento:
# Directory where the checkpoints will be saved
checkpoint_dir = './training_checkpoints'
# Name of the checkpoint files
checkpoint_prefix = os.path.join(checkpoint_dir, "ckpt_{epoch}")
checkpoint_callback = tf.keras.callbacks.ModelCheckpoint(
filepath=checkpoint_prefix,
save_weights_only=True)
Ejecutar el entrenamiento
Para mantener un tiempo de entrenamiento razonable, use 10 épocas para entrenar el modelo. En Colab, configure el tiempo de ejecución en GPU para un entrenamiento más rápido.
EPOCHS = 20
history = model.fit(dataset, epochs=EPOCHS, callbacks=[checkpoint_callback])
Epoch 1/20 172/172 [==============================] - 7s 25ms/step - loss: 2.7409 Epoch 2/20 172/172 [==============================] - 5s 24ms/step - loss: 2.0092 Epoch 3/20 172/172 [==============================] - 5s 24ms/step - loss: 1.7211 Epoch 4/20 172/172 [==============================] - 5s 24ms/step - loss: 1.5550 Epoch 5/20 172/172 [==============================] - 5s 24ms/step - loss: 1.4547 Epoch 6/20 172/172 [==============================] - 5s 24ms/step - loss: 1.3865 Epoch 7/20 172/172 [==============================] - 5s 24ms/step - loss: 1.3325 Epoch 8/20 172/172 [==============================] - 5s 24ms/step - loss: 1.2875 Epoch 9/20 172/172 [==============================] - 5s 24ms/step - loss: 1.2474 Epoch 10/20 172/172 [==============================] - 5s 24ms/step - loss: 1.2066 Epoch 11/20 172/172 [==============================] - 5s 24ms/step - loss: 1.1678 Epoch 12/20 172/172 [==============================] - 5s 24ms/step - loss: 1.1270 Epoch 13/20 172/172 [==============================] - 5s 24ms/step - loss: 1.0842 Epoch 14/20 172/172 [==============================] - 5s 24ms/step - loss: 1.0388 Epoch 15/20 172/172 [==============================] - 5s 24ms/step - loss: 0.9909 Epoch 16/20 172/172 [==============================] - 5s 24ms/step - loss: 0.9409 Epoch 17/20 172/172 [==============================] - 5s 24ms/step - loss: 0.8887 Epoch 18/20 172/172 [==============================] - 5s 24ms/step - loss: 0.8373 Epoch 19/20 172/172 [==============================] - 5s 24ms/step - loss: 0.7849 Epoch 20/20 172/172 [==============================] - 5s 24ms/step - loss: 0.7371
Generar texto
La forma más sencilla de generar texto con este modelo es ejecutarlo en un bucle y realizar un seguimiento del estado interno del modelo a medida que lo ejecuta.
Cada vez que llama al modelo, pasa un texto y un estado interno. El modelo devuelve una predicción para el siguiente carácter y su nuevo estado. Vuelva a pasar la predicción y el estado para continuar generando texto.
Lo siguiente hace una predicción de un solo paso:
class OneStep(tf.keras.Model):
def __init__(self, model, chars_from_ids, ids_from_chars, temperature=1.0):
super().__init__()
self.temperature = temperature
self.model = model
self.chars_from_ids = chars_from_ids
self.ids_from_chars = ids_from_chars
# Create a mask to prevent "[UNK]" from being generated.
skip_ids = self.ids_from_chars(['[UNK]'])[:, None]
sparse_mask = tf.SparseTensor(
# Put a -inf at each bad index.
values=[-float('inf')]*len(skip_ids),
indices=skip_ids,
# Match the shape to the vocabulary
dense_shape=[len(ids_from_chars.get_vocabulary())])
self.prediction_mask = tf.sparse.to_dense(sparse_mask)
@tf.function
def generate_one_step(self, inputs, states=None):
# Convert strings to token IDs.
input_chars = tf.strings.unicode_split(inputs, 'UTF-8')
input_ids = self.ids_from_chars(input_chars).to_tensor()
# Run the model.
# predicted_logits.shape is [batch, char, next_char_logits]
predicted_logits, states = self.model(inputs=input_ids, states=states,
return_state=True)
# Only use the last prediction.
predicted_logits = predicted_logits[:, -1, :]
predicted_logits = predicted_logits/self.temperature
# Apply the prediction mask: prevent "[UNK]" from being generated.
predicted_logits = predicted_logits + self.prediction_mask
# Sample the output logits to generate token IDs.
predicted_ids = tf.random.categorical(predicted_logits, num_samples=1)
predicted_ids = tf.squeeze(predicted_ids, axis=-1)
# Convert from token ids to characters
predicted_chars = self.chars_from_ids(predicted_ids)
# Return the characters and model state.
return predicted_chars, states
one_step_model = OneStep(model, chars_from_ids, ids_from_chars)
Ejecútelo en un bucle para generar algo de texto. Mirando el texto generado, verá que el modelo sabe cuándo usar mayúsculas, hacer párrafos e imita un vocabulario de escritura similar al de Shakespeare. Con el pequeño número de épocas de entrenamiento, aún no ha aprendido a formar oraciones coherentes.
start = time.time()
states = None
next_char = tf.constant(['ROMEO:'])
result = [next_char]
for n in range(1000):
next_char, states = one_step_model.generate_one_step(next_char, states=states)
result.append(next_char)
result = tf.strings.join(result)
end = time.time()
print(result[0].numpy().decode('utf-8'), '\n\n' + '_'*80)
print('\nRun time:', end - start)
ROMEO: This is not your comfort, when you see-- Huntsmit, we have already, let us she so hard, Matters there well. Thou camallo, this night, you should her. Gar of all the world to save my life, I'll do well for one boy, and fetch she pass The shadow with others' sole. First Huntsman: O rude blue, come,' to woe, and beat my beauty is ears. An, thither, be ruled betimes, be cruel wonder That hath but adainst my head. Nurse: Peter, your ancest-ticked faint. MIRANDA: More of Hereford, speak you: father, for our gentleman Who do I not? look, soars! CORIOLANUS: Why, sir, what was done to brine? I pray, how many mouth A brave defence speak to us: he has not out To hold my soldiers; like one another smiled Than a mad father's boots, you know, my lord, Where is he was better than you see, of the town, our kindred heart, that would sudden to the worse, An if I met, yet fetch him own. LUCENTIO: I may be relight. MENENIUS: Ay, with sixteen years, finders both, and as the most proportion's mooners ________________________________________________________________________________ Run time: 2.67258358001709
Lo más fácil que puede hacer para mejorar los resultados es entrenarlo durante más tiempo (pruebe EPOCHS = 30
).
También puede experimentar con una cadena de inicio diferente, intente agregar otra capa RNN para mejorar la precisión del modelo o ajustar el parámetro de temperatura para generar predicciones más o menos aleatorias.
Si desea que el modelo genere texto más rápido , lo más fácil que puede hacer es generar el texto por lotes. En el siguiente ejemplo, el modelo genera 5 salidas aproximadamente en el mismo tiempo que se tardó en generar 1 arriba.
start = time.time()
states = None
next_char = tf.constant(['ROMEO:', 'ROMEO:', 'ROMEO:', 'ROMEO:', 'ROMEO:'])
result = [next_char]
for n in range(1000):
next_char, states = one_step_model.generate_one_step(next_char, states=states)
result.append(next_char)
result = tf.strings.join(result)
end = time.time()
print(result, '\n\n' + '_'*80)
print('\nRun time:', end - start)
tf.Tensor( [b"ROMEO:\nThe execution forbear that I was a kiss\nA mother in their ownsation with out the rest;\nNor seal'd-me to tell thee joyful? what said Yor Marcius! woe\nThat banish'd unrever-elent I confess\nA husband.\n\nLADY ANNE:\nTo men of summon encest wond\nlike him, Anding your freth hate for vain\nMay hardly slakes meer's name, o' no voice,\nBegail that passing child that valour'd gown?\n\nWARWICK:\nOxford, how much that made the rock Tarpeian?\n\nLUCENTIO:\nImirougester: I am too your freeds.\n\nCAPULET:\nThen I will wash\nBecause the effect of the citizens,\nOur skifts are born. Know the most patards time and will\nwomen! compare of the coronation, I did\nif you find it won to him and I.\n\nROMEO:\nGood evil; get you gone, let me have married me but yet.\n\nWARWICK:\nWhy, thou hast said his hastings? King Henry's head,\nAnd doth our scene stubility in merit ot perils\nHere to revenge, I say, proud queen,\nUnless you hence, my sons of weary perfects;\nReshon'd the prisoner in blood of jocund\nIn every scoutness' gentle Rucuov" b"ROMEO: go. Take it on yon placking for me, if thou didst love so blunt,\nLest old Lucio, whom I defy years, fellow-hands,\nThis very approbation lives.\n\nLADY ANNE:\nThat's your yel; if it come.\n\nKATHARINA:\nI'll pray you, sit,\nPut not your boot of such as they were, at length\nWas grieved for grept Hanting, on my service, kill, kill, kissis;\nAnd yet I was an Edward in every but a\ngreat maker your flesh and gold, another fear,\nAnd this, before your brother's son,\nWith its strange: but he will set upon you.\n\nCORIOLANUS:\nAy, my lord.\n\nFRIAR LAURENCE:\nRomeo! O, ho! first let remembers to piece away.\nThis is the Tower.\n\nThird Citizen:\nBehold, the matter?\n\nDUKE VINCENTIO:\nYou are too blind so many; yet so I did will take Mercutio,\nI may be jogging whiles; he sees it.\n\nCLARENCE:\nMethought that evil weeps so Romeo?\nWho be so heavy? I think they speak,\nBefore she will be flight.\n\nAll:\nOl, is become of such hath call'd hims, study and dance.\nIf that my powerful sings\nshould be a beacheries. Edward as 'lon " b"ROMEO:\nThe son, peace! thy sacred lizer throne,\nRather my tongue upon't. I can, bethick your help!\nJust of a king, woe's stand and love.\n\nBRUTUS:\nI can better divish'd and not all under affect:\nO, be quickly, villain, to report this school,\nI had none seen the dust of Hortensio.\n\nBIANCA:\nGod's good, my lord, to help your rece,ter famina,\nAnd Juliet like my hold, Liest your best:\nTo-morrow that I keep in some villaging\nAnd make her beauty continued in pees.\nMethoughts to London with our bodies in bounting love,\nCompliment by ups my green as I do favours\nWith a precious wind with child by adly way in love\nUnder the world; and so it is the malmsey-butt in\nThe very new offing to your follies.\n\nJULIET:\nCome on, lay here in hazarring her to bring me. I less there\nEscaped for flight, we may do infringe him.\n\nKeeper:\nMy lord, I have no other bent.\nWhere be the ped-she king's great aid;\nIf you'll more entertainment from you betred,\nThe secrets me to keep him soft; to curse the war,\nThe care colour. W" b"ROMEO:\nGood vows. Thou dead to lurp!\nO God! I cannot make, you have desert\nThan my passes to women all hopes with him?\n\nSecond Musician:\nNo, my liege, in gistocking a cockle or a month o' the peoper.\n\nDUKE VINCENTIO:\nNow, hark! the day; and therefore stand at safe\nWill come, to accuse my dusy hath done, upon you\nBut your will make me out in high forget. If you're past me leave,\nIf not, Saint George I bid thee here,\nMy father, eyes; and I fear any think\nTo the purpose magiin: I find thou refuse\nAnd bethink me to the earth the dire part and day strike.\n\nKING EDWARD IV:\nWhat were you lose. Father, I fear\nIs true the liquid dress: but 'tis a wildly\nkindly, proud I am severe;\nThe time shall point your state as voices and chartels\nclow the king's, being rather tell me out.\n\nPOLIXENES:\nA ponder, cord, not title and heart-honour in host;\nAnd call ummised the injury\nAs many as your tert of honour, this steep\nTo your infinity, if thou owest to\nforsworn you word unbrain; for, brings an edg,\nPloceed pas" b"ROMEO:\nNumbering, and may not unking, methinks, Lord Hastings, let him left your\nresolution as I live in solemn-more,\nAs if this still and scars of ceremony,\nShowing, as in a month being rather child,\nLook on my banish'd hands;\nWho after many moticing Romans,\nThat quickly shook like soft and stone with me.\n\nQUEEN MARGARET:\nAnd limp her tender than thy embassist, fines,\nWith enns most kinding eee:\nOr else you do to help him there:\nIf thou behold, by his rapher,\nAnd 'genty men's sake. Awar!\n\nISABELLA:\nO, pardon me, indeed, didst not a friend for aid\nMyself to-night: thou hast proved corooling\nWhom his oath rides of steeded knaves. I am\ngentlemen, you have come to both groan and my love.\n\nLUCIO:\nBador,ly, madam, but ne'er cause the crown,\nAnd, if I live, my lord.\n\nKING LEWIS XI:\nWarwick, Plaunis; and seeing thou hast slain\nThe bastardy of England am alike.'\nThe royal rabot, to appoint their power,\nFor such a day for this for me; so it is\nmoney, and again with lightning breasts: taste\nThese dece"], shape=(5,), dtype=string) ________________________________________________________________________________ Run time: 2.5006580352783203
Exportar el generador
Este modelo de un solo paso se puede guardar y restaurar fácilmente, lo que le permite usarlo en cualquier lugar donde se acepte un tf.saved_model
.
tf.saved_model.save(one_step_model, 'one_step')
one_step_reloaded = tf.saved_model.load('one_step')
WARNING:tensorflow:Skipping full serialization of Keras layer <__main__.OneStep object at 0x7fbb7c739510>, because it is not built. 2022-01-26 01:15:24.355813: W tensorflow/python/util/util.cc:368] Sets are not currently considered sequences, but this may change in the future, so consider avoiding using them. WARNING:absl:Found untraced functions such as gru_cell_layer_call_fn, gru_cell_layer_call_and_return_conditional_losses while saving (showing 2 of 2). These functions will not be directly callable after loading. INFO:tensorflow:Assets written to: one_step/assets INFO:tensorflow:Assets written to: one_step/assets
states = None
next_char = tf.constant(['ROMEO:'])
result = [next_char]
for n in range(100):
next_char, states = one_step_reloaded.generate_one_step(next_char, states=states)
result.append(next_char)
print(tf.strings.join(result)[0].numpy().decode("utf-8"))
ROMEO: Take man's, wife, mark me, and be advised. Fool, in the crown, unhappy is the easy throne, Enforced
Avanzado: Entrenamiento Personalizado
El procedimiento de entrenamiento anterior es simple, pero no le da mucho control. Utiliza el maestro forzado que evita que las malas predicciones se retroalimenten al modelo, por lo que el modelo nunca aprende a recuperarse de los errores.
Entonces, ahora que ha visto cómo ejecutar el modelo manualmente, ahora implementará el ciclo de entrenamiento. Esto brinda un punto de partida si, por ejemplo, desea implementar el aprendizaje del plan de estudios para ayudar a estabilizar la salida de bucle abierto del modelo.
La parte más importante de un ciclo de entrenamiento personalizado es la función de paso de entrenamiento.
Use tf.GradientTape
para rastrear los degradados. Puede obtener más información sobre este enfoque leyendo la guía de ejecución ansiosa .
El procedimiento básico es:
- Ejecute el modelo y calcule la pérdida bajo un
tf.GradientTape
. - Calcule las actualizaciones y aplíquelas al modelo utilizando el optimizador.
class CustomTraining(MyModel):
@tf.function
def train_step(self, inputs):
inputs, labels = inputs
with tf.GradientTape() as tape:
predictions = self(inputs, training=True)
loss = self.loss(labels, predictions)
grads = tape.gradient(loss, model.trainable_variables)
self.optimizer.apply_gradients(zip(grads, model.trainable_variables))
return {'loss': loss}
La implementación anterior del método train_step
sigue las convenciones train_step
de Keras . Esto es opcional, pero le permite cambiar el comportamiento del paso de tren y seguir usando los métodos Model.compile
y Model.fit
de keras.
model = CustomTraining(
vocab_size=len(ids_from_chars.get_vocabulary()),
embedding_dim=embedding_dim,
rnn_units=rnn_units)
model.compile(optimizer = tf.keras.optimizers.Adam(),
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True))
model.fit(dataset, epochs=1)
172/172 [==============================] - 7s 24ms/step - loss: 2.6916 <keras.callbacks.History at 0x7fbb9c5ade90>
O si necesita más control, puede escribir su propio ciclo de entrenamiento personalizado completo:
EPOCHS = 10
mean = tf.metrics.Mean()
for epoch in range(EPOCHS):
start = time.time()
mean.reset_states()
for (batch_n, (inp, target)) in enumerate(dataset):
logs = model.train_step([inp, target])
mean.update_state(logs['loss'])
if batch_n % 50 == 0:
template = f"Epoch {epoch+1} Batch {batch_n} Loss {logs['loss']:.4f}"
print(template)
# saving (checkpoint) the model every 5 epochs
if (epoch + 1) % 5 == 0:
model.save_weights(checkpoint_prefix.format(epoch=epoch))
print()
print(f'Epoch {epoch+1} Loss: {mean.result().numpy():.4f}')
print(f'Time taken for 1 epoch {time.time() - start:.2f} sec')
print("_"*80)
model.save_weights(checkpoint_prefix.format(epoch=epoch))
Epoch 1 Batch 0 Loss 2.1412 Epoch 1 Batch 50 Loss 2.0362 Epoch 1 Batch 100 Loss 1.9721 Epoch 1 Batch 150 Loss 1.8361 Epoch 1 Loss: 1.9732 Time taken for 1 epoch 5.90 sec ________________________________________________________________________________ Epoch 2 Batch 0 Loss 1.8170 Epoch 2 Batch 50 Loss 1.6815 Epoch 2 Batch 100 Loss 1.6288 Epoch 2 Batch 150 Loss 1.6625 Epoch 2 Loss: 1.6989 Time taken for 1 epoch 5.19 sec ________________________________________________________________________________ Epoch 3 Batch 0 Loss 1.6405 Epoch 3 Batch 50 Loss 1.5635 Epoch 3 Batch 100 Loss 1.5912 Epoch 3 Batch 150 Loss 1.5241 Epoch 3 Loss: 1.5428 Time taken for 1 epoch 5.33 sec ________________________________________________________________________________ Epoch 4 Batch 0 Loss 1.4469 Epoch 4 Batch 50 Loss 1.4512 Epoch 4 Batch 100 Loss 1.4748 Epoch 4 Batch 150 Loss 1.4077 Epoch 4 Loss: 1.4462 Time taken for 1 epoch 5.30 sec ________________________________________________________________________________ Epoch 5 Batch 0 Loss 1.3798 Epoch 5 Batch 50 Loss 1.3727 Epoch 5 Batch 100 Loss 1.3793 Epoch 5 Batch 150 Loss 1.3883 Epoch 5 Loss: 1.3793 Time taken for 1 epoch 5.41 sec ________________________________________________________________________________ Epoch 6 Batch 0 Loss 1.3024 Epoch 6 Batch 50 Loss 1.3325 Epoch 6 Batch 100 Loss 1.3483 Epoch 6 Batch 150 Loss 1.3362 Epoch 6 Loss: 1.3283 Time taken for 1 epoch 5.34 sec ________________________________________________________________________________ Epoch 7 Batch 0 Loss 1.2669 Epoch 7 Batch 50 Loss 1.2864 Epoch 7 Batch 100 Loss 1.2498 Epoch 7 Batch 150 Loss 1.2482 Epoch 7 Loss: 1.2832 Time taken for 1 epoch 5.27 sec ________________________________________________________________________________ Epoch 8 Batch 0 Loss 1.2289 Epoch 8 Batch 50 Loss 1.2577 Epoch 8 Batch 100 Loss 1.2070 Epoch 8 Batch 150 Loss 1.2333 Epoch 8 Loss: 1.2436 Time taken for 1 epoch 5.18 sec ________________________________________________________________________________ Epoch 9 Batch 0 Loss 1.2138 Epoch 9 Batch 50 Loss 1.2410 Epoch 9 Batch 100 Loss 1.1898 Epoch 9 Batch 150 Loss 1.2157 Epoch 9 Loss: 1.2038 Time taken for 1 epoch 5.23 sec ________________________________________________________________________________ Epoch 10 Batch 0 Loss 1.1200 Epoch 10 Batch 50 Loss 1.1545 Epoch 10 Batch 100 Loss 1.1688 Epoch 10 Batch 150 Loss 1.1748 Epoch 10 Loss: 1.1642 Time taken for 1 epoch 5.53 sec ________________________________________________________________________________