Envio de dados diferentes para clientes específicos com tff.federated_select

Ver no TensorFlow.org Executar no Google Colab Ver fonte no GitHub Baixar caderno

Este tutorial demonstra como implementar algoritmos federados customizados no TFF que requerem o envio de dados diferentes para clientes diferentes. Você pode já estar familiarizado com tff.federated_broadcast que envia um único valor colocado em servidor para todos os clientes. Este tutorial se concentra em casos em que diferentes partes de um valor baseado em servidor são enviadas para clientes diferentes. Isso pode ser útil para dividir partes de um modelo em diferentes clientes, a fim de evitar o envio de todo o modelo a um único cliente.

Vamos começar importando tanto tensorflow e tensorflow_federated .

!pip install --quiet --upgrade tensorflow-federated-nightly
!pip install --quiet --upgrade nest-asyncio

import nest_asyncio
nest_asyncio.apply()
import tensorflow as tf
import tensorflow_federated as tff
tff.backends.native.set_local_python_execution_context()

Envio de valores diferentes com base nos dados do cliente

Considere o caso em que temos alguma lista colocada no servidor da qual queremos enviar alguns elementos para cada cliente com base em alguns dados colocados no cliente. Por exemplo, uma lista de strings no servidor e nos clientes, uma lista separada por vírgulas de índices para download. Podemos implementar isso da seguinte maneira:

list_of_strings_type = tff.TensorType(tf.string, [None])
# We only ever send exactly two values to each client. The number of keys per
# client must be a fixed number across all clients.
number_of_keys_per_client = 2
keys_type = tff.TensorType(tf.int32, [number_of_keys_per_client])
get_size = tff.tf_computation(lambda x: tf.size(x))
select_fn = tff.tf_computation(lambda val, index: tf.gather(val, index))
client_data_type = tf.string

# A function from our client data to the indices of the values we'd like to
# select from the server.
@tff.tf_computation(client_data_type)
@tff.check_returns_type(keys_type)
def keys_for_client(client_string):
  # We assume our client data is a single string consisting of exactly three
  # comma-separated integers indicating which values to grab from the server.
  split = tf.strings.split([client_string], sep=',')[0]
  return tf.strings.to_number([split[0], split[1]], tf.int32)

@tff.tf_computation(tff.SequenceType(tf.string))
@tff.check_returns_type(tf.string)
def concatenate(values):
  def reduce_fn(acc, item):
    return tf.cond(tf.math.equal(acc, ''),
                   lambda: item,
                   lambda: tf.strings.join([acc, item], ','))
  return values.reduce('', reduce_fn)

@tff.federated_computation(tff.type_at_server(list_of_strings_type), tff.type_at_clients(client_data_type))
def broadcast_based_on_client_data(list_of_strings_at_server, client_data):
  keys_at_clients = tff.federated_map(keys_for_client, client_data)
  max_key = tff.federated_map(get_size, list_of_strings_at_server)
  values_at_clients = tff.federated_select(keys_at_clients, max_key, list_of_strings_at_server, select_fn)
  value_at_clients = tff.federated_map(concatenate, values_at_clients)
  return value_at_clients

Em seguida, podemos simular nosso cálculo, fornecendo a lista de strings colocada no servidor, bem como dados de string para cada cliente:

client_data = ['0,1', '1,2', '2,0']
broadcast_based_on_client_data(['a', 'b', 'c'], client_data)
[<tf.Tensor: shape=(), dtype=string, numpy=b'a,b'>,
 <tf.Tensor: shape=(), dtype=string, numpy=b'b,c'>,
 <tf.Tensor: shape=(), dtype=string, numpy=b'c,a'>]

Envio de um elemento aleatório para cada cliente

Como alternativa, pode ser útil enviar uma parte aleatória dos dados do servidor para cada cliente. Podemos implementar isso gerando primeiro uma chave aleatória em cada cliente e, em seguida, seguindo um processo de seleção semelhante ao usado acima:

@tff.tf_computation(tf.int32)
@tff.check_returns_type(tff.TensorType(tf.int32, [1]))
def get_random_key(max_key):
  return tf.random.uniform(shape=[1], minval=0, maxval=max_key, dtype=tf.int32)

list_of_strings_type = tff.TensorType(tf.string, [None])
get_size = tff.tf_computation(lambda x: tf.size(x))
select_fn = tff.tf_computation(lambda val, index: tf.gather(val, index))

@tff.tf_computation(tff.SequenceType(tf.string))
@tff.check_returns_type(tf.string)
def get_last_element(sequence):
  return sequence.reduce('', lambda _initial_state, val: val)

@tff.federated_computation(tff.type_at_server(list_of_strings_type))
def broadcast_random_element(list_of_strings_at_server):
  max_key_at_server = tff.federated_map(get_size, list_of_strings_at_server)
  max_key_at_clients = tff.federated_broadcast(max_key_at_server)
  key_at_clients = tff.federated_map(get_random_key, max_key_at_clients)
  random_string_sequence_at_clients = tff.federated_select(
      key_at_clients, max_key_at_server, list_of_strings_at_server, select_fn)
  # Even though we only passed in a single key, `federated_select` returns a
  # sequence for each client. We only care about the last (and only) element.
  random_string_at_clients = tff.federated_map(get_last_element, random_string_sequence_at_clients)
  return random_string_at_clients

Desde a nossa broadcast_random_element função não tomar quaisquer dados colocados no cliente, temos que configurar o TFF Simulação Runtime com um número padrão de clientes para usar:

tff.backends.native.set_local_python_execution_context(default_num_clients=3)

Então podemos simular a seleção. Nós podemos mudar default_num_clients acima e a lista de strings abaixo para gerar resultados diferentes, ou simplesmente re-executar a computação para gerar diferentes saídas aleatórias.

broadcast_random_element(tf.convert_to_tensor(['foo', 'bar', 'baz']))