Aiuto proteggere la Grande Barriera Corallina con tensorflow sul Kaggle Join Sfida

Esempio di potatura in Keras

Visualizza su TensorFlow.org Visualizza la fonte su GitHub Scarica taccuino

Panoramica

Benvenuti in un esempio end-to-end per la potatura di peso magnitudo-based.

Altre pagine

Per un'introduzione a ciò che la potatura è e per determinare se si dovrebbe usare (compreso ciò che è supportato), vedere la pagina di riepilogo .

Per trovare rapidamente le API necessari per il vostro caso d'uso (al di là di potatura completamente un modello con 80% scarsità), consultare la guida completa .

Riepilogo

In questo tutorial, dovrai:

  1. Addestrare un tf.keras modello per MNIST da zero.
  2. Ottimizza il modello applicando l'API di potatura e verifica la precisione.
  3. Crea modelli TF e TFLite 3 volte più piccoli dalla potatura.
  4. Crea un modello TFLite 10 volte più piccolo combinando potatura e quantizzazione post-allenamento.
  5. Guarda la persistenza della precisione da TF a TFLite.

Impostare

 pip install -q tensorflow-model-optimization
import tempfile
import os

import tensorflow as tf
import numpy as np

from tensorflow import keras

%load_ext tensorboard

Allena un modello per MNIST senza potatura

# Load MNIST dataset
mnist = keras.datasets.mnist
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()

# Normalize the input image so that each pixel value is between 0 and 1.
train_images = train_images / 255.0
test_images = test_images / 255.0

# Define the model architecture.
model = keras.Sequential([
  keras.layers.InputLayer(input_shape=(28, 28)),
  keras.layers.Reshape(target_shape=(28, 28, 1)),
  keras.layers.Conv2D(filters=12, kernel_size=(3, 3), activation='relu'),
  keras.layers.MaxPooling2D(pool_size=(2, 2)),
  keras.layers.Flatten(),
  keras.layers.Dense(10)
])

# Train the digit classification model
model.compile(optimizer='adam',
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
              metrics=['accuracy'])

model.fit(
  train_images,
  train_labels,
  epochs=4,
  validation_split=0.1,
)
Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/mnist.npz
11493376/11490434 [==============================] - 0s 0us/step
Epoch 1/4
1688/1688 [==============================] - 10s 6ms/step - loss: 0.2785 - accuracy: 0.9220 - val_loss: 0.1031 - val_accuracy: 0.9740
Epoch 2/4
1688/1688 [==============================] - 9s 5ms/step - loss: 0.1063 - accuracy: 0.9691 - val_loss: 0.0782 - val_accuracy: 0.9790
Epoch 3/4
1688/1688 [==============================] - 9s 5ms/step - loss: 0.0815 - accuracy: 0.9765 - val_loss: 0.0788 - val_accuracy: 0.9775
Epoch 4/4
1688/1688 [==============================] - 9s 5ms/step - loss: 0.0689 - accuracy: 0.9797 - val_loss: 0.0633 - val_accuracy: 0.9840
<tensorflow.python.keras.callbacks.History at 0x7f146fbd8bd0>

Valuta l'accuratezza del test di base e salva il modello per un uso successivo.

_, baseline_model_accuracy = model.evaluate(
    test_images, test_labels, verbose=0)

print('Baseline test accuracy:', baseline_model_accuracy)

_, keras_file = tempfile.mkstemp('.h5')
tf.keras.models.save_model(model, keras_file, include_optimizer=False)
print('Saved baseline model to:', keras_file)
Baseline test accuracy: 0.9775999784469604
Saved baseline model to: /tmp/tmpjj6swf59.h5

Perfeziona il modello pre-addestrato con la potatura

Definisci il modello

Applicherai la potatura all'intero modello e vedrai questo nel riepilogo del modello.

In questo esempio, si avvia il modello con il 50% di scarsità (50% di zeri nei pesi) e si finisce con l'80% di scarsità.

Nella guida completa , si può vedere come potare alcuni strati di miglioramento del modello di precisione.

import tensorflow_model_optimization as tfmot

prune_low_magnitude = tfmot.sparsity.keras.prune_low_magnitude

# Compute end step to finish pruning after 2 epochs.
batch_size = 128
epochs = 2
validation_split = 0.1 # 10% of training set will be used for validation set. 

num_images = train_images.shape[0] * (1 - validation_split)
end_step = np.ceil(num_images / batch_size).astype(np.int32) * epochs

# Define model for pruning.
pruning_params = {
      'pruning_schedule': tfmot.sparsity.keras.PolynomialDecay(initial_sparsity=0.50,
                                                               final_sparsity=0.80,
                                                               begin_step=0,
                                                               end_step=end_step)
}

model_for_pruning = prune_low_magnitude(model, **pruning_params)

# `prune_low_magnitude` requires a recompile.
model_for_pruning.compile(optimizer='adam',
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
              metrics=['accuracy'])

model_for_pruning.summary()
/tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/keras/engine/base_layer.py:2191: UserWarning: `layer.add_variable` is deprecated and will be removed in a future version. Please use `layer.add_weight` method instead.
  warnings.warn('`layer.add_variable` is deprecated and '
Model: "sequential"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
prune_low_magnitude_reshape  (None, 28, 28, 1)         1         
_________________________________________________________________
prune_low_magnitude_conv2d ( (None, 26, 26, 12)        230       
_________________________________________________________________
prune_low_magnitude_max_pool (None, 13, 13, 12)        1         
_________________________________________________________________
prune_low_magnitude_flatten  (None, 2028)              1         
_________________________________________________________________
prune_low_magnitude_dense (P (None, 10)                40572     
=================================================================
Total params: 40,805
Trainable params: 20,410
Non-trainable params: 20,395
_________________________________________________________________

Addestrare e valutare il modello rispetto alla linea di base

Accordatura fine con potatura per due epoche.

tfmot.sparsity.keras.UpdatePruningStep è richiesto durante l'allenamento, e tfmot.sparsity.keras.PruningSummaries prevede registri per monitorare i progressi e il debug.

logdir = tempfile.mkdtemp()

callbacks = [
  tfmot.sparsity.keras.UpdatePruningStep(),
  tfmot.sparsity.keras.PruningSummaries(log_dir=logdir),
]

model_for_pruning.fit(train_images, train_labels,
                  batch_size=batch_size, epochs=epochs, validation_split=validation_split,
                  callbacks=callbacks)
Epoch 1/2
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/ops/array_ops.py:5049: calling gather (from tensorflow.python.ops.array_ops) with validate_indices is deprecated and will be removed in a future version.
Instructions for updating:
The `validate_indices` argument has no effect. Indices are always validated on CPU and never validated on GPU.
  3/422 [..............................] - ETA: 12s - loss: 0.0628 - accuracy: 0.9896  WARNING:tensorflow:Callback method `on_train_batch_end` is slow compared to the batch time (batch time: 0.0075s vs `on_train_batch_end` time: 0.0076s). Check your callbacks.
422/422 [==============================] - 5s 9ms/step - loss: 0.0797 - accuracy: 0.9771 - val_loss: 0.0828 - val_accuracy: 0.9790
Epoch 2/2
422/422 [==============================] - 3s 8ms/step - loss: 0.0971 - accuracy: 0.9741 - val_loss: 0.0839 - val_accuracy: 0.9775
<tensorflow.python.keras.callbacks.History at 0x7f12e4502910>

Per questo esempio, c'è una perdita minima nell'accuratezza del test dopo la potatura, rispetto alla linea di base.

_, model_for_pruning_accuracy = model_for_pruning.evaluate(
   test_images, test_labels, verbose=0)

print('Baseline test accuracy:', baseline_model_accuracy) 
print('Pruned test accuracy:', model_for_pruning_accuracy)
Baseline test accuracy: 0.9775999784469604
Pruned test accuracy: 0.972100019454956

I registri mostrano la progressione della scarsità su base per strato.

%tensorboard --logdir={logdir}

Per gli utenti non CoLab, è possibile vedere i risultati di una precedente esecuzione di questo blocco di codice su TensorBoard.dev .

Crea modelli 3 volte più piccoli dalla potatura

Sia tfmot.sparsity.keras.strip_pruning e applicando un algoritmo di compressione standard (ad esempio tramite gzip) sono necessarie per vedere i benefici di compressione di potatura.

  • strip_pruning è necessaria in quanto elimina ogni tf.Variable che la potatura ha bisogno solo durante l'allenamento, che altrimenti aggiungere alla dimensione del modello durante l'inferenza
  • È necessario applicare un algoritmo di compressione standard poiché le matrici di peso serializzate hanno le stesse dimensioni di prima della potatura. Tuttavia, la potatura rende la maggior parte dei pesi zero, il che aggiunge ridondanza che gli algoritmi possono utilizzare per comprimere ulteriormente il modello.

Innanzitutto, crea un modello comprimibile per TensorFlow.

model_for_export = tfmot.sparsity.keras.strip_pruning(model_for_pruning)

_, pruned_keras_file = tempfile.mkstemp('.h5')
tf.keras.models.save_model(model_for_export, pruned_keras_file, include_optimizer=False)
print('Saved pruned Keras model to:', pruned_keras_file)
WARNING:tensorflow:Compiled the loaded model, but the compiled metrics have yet to be built. `model.compile_metrics` will be empty until you train or evaluate the model.
Saved pruned Keras model to: /tmp/tmp22u333hk.h5

Quindi, crea un modello comprimibile per TFLite.

converter = tf.lite.TFLiteConverter.from_keras_model(model_for_export)
pruned_tflite_model = converter.convert()

_, pruned_tflite_file = tempfile.mkstemp('.tflite')

with open(pruned_tflite_file, 'wb') as f:
  f.write(pruned_tflite_model)

print('Saved pruned TFLite model to:', pruned_tflite_file)
WARNING:tensorflow:Compiled the loaded model, but the compiled metrics have yet to be built. `model.compile_metrics` will be empty until you train or evaluate the model.
INFO:tensorflow:Assets written to: /tmp/tmp51falze0/assets
Saved pruned TFLite model to: /tmp/tmpehx5la2i.tflite

Definire una funzione di supporto per comprimere effettivamente i modelli tramite gzip e misurare la dimensione compressa.

def get_gzipped_model_size(file):
  # Returns size of gzipped model, in bytes.
  import os
  import zipfile

  _, zipped_file = tempfile.mkstemp('.zip')
  with zipfile.ZipFile(zipped_file, 'w', compression=zipfile.ZIP_DEFLATED) as f:
    f.write(file)

  return os.path.getsize(zipped_file)

Confronta e vedi che i modelli sono 3 volte più piccoli dalla potatura.

print("Size of gzipped baseline Keras model: %.2f bytes" % (get_gzipped_model_size(keras_file)))
print("Size of gzipped pruned Keras model: %.2f bytes" % (get_gzipped_model_size(pruned_keras_file)))
print("Size of gzipped pruned TFlite model: %.2f bytes" % (get_gzipped_model_size(pruned_tflite_file)))
Size of gzipped baseline Keras model: 78211.00 bytes
Size of gzipped pruned Keras model: 25797.00 bytes
Size of gzipped pruned TFlite model: 24995.00 bytes

Crea un modello 10 volte più piccolo combinando potatura e quantizzazione

È possibile applicare la quantizzazione post-addestramento al modello potato per ulteriori vantaggi.

converter = tf.lite.TFLiteConverter.from_keras_model(model_for_export)
converter.optimizations = [tf.lite.Optimize.DEFAULT]
quantized_and_pruned_tflite_model = converter.convert()

_, quantized_and_pruned_tflite_file = tempfile.mkstemp('.tflite')

with open(quantized_and_pruned_tflite_file, 'wb') as f:
  f.write(quantized_and_pruned_tflite_model)

print('Saved quantized and pruned TFLite model to:', quantized_and_pruned_tflite_file)

print("Size of gzipped baseline Keras model: %.2f bytes" % (get_gzipped_model_size(keras_file)))
print("Size of gzipped pruned and quantized TFlite model: %.2f bytes" % (get_gzipped_model_size(quantized_and_pruned_tflite_file)))
WARNING:tensorflow:Compiled the loaded model, but the compiled metrics have yet to be built. `model.compile_metrics` will be empty until you train or evaluate the model.
WARNING:tensorflow:Compiled the loaded model, but the compiled metrics have yet to be built. `model.compile_metrics` will be empty until you train or evaluate the model.
INFO:tensorflow:Assets written to: /tmp/tmp6tzu3z87/assets
INFO:tensorflow:Assets written to: /tmp/tmp6tzu3z87/assets
Saved quantized and pruned TFLite model to: /tmp/tmp0mvlkin1.tflite
Size of gzipped baseline Keras model: 78211.00 bytes
Size of gzipped pruned and quantized TFlite model: 8031.00 bytes

Visualizza la persistenza dell'accuratezza da TF a TFLite

Definire una funzione di supporto per valutare il modello TF Lite sul set di dati di test.

import numpy as np

def evaluate_model(interpreter):
  input_index = interpreter.get_input_details()[0]["index"]
  output_index = interpreter.get_output_details()[0]["index"]

  # Run predictions on ever y image in the "test" dataset.
  prediction_digits = []
  for i, test_image in enumerate(test_images):
    if i % 1000 == 0:
      print('Evaluated on {n} results so far.'.format(n=i))
    # Pre-processing: add batch dimension and convert to float32 to match with
    # the model's input data format.
    test_image = np.expand_dims(test_image, axis=0).astype(np.float32)
    interpreter.set_tensor(input_index, test_image)

    # Run inference.
    interpreter.invoke()

    # Post-processing: remove batch dimension and find the digit with highest
    # probability.
    output = interpreter.tensor(output_index)
    digit = np.argmax(output()[0])
    prediction_digits.append(digit)

  print('\n')
  # Compare prediction results with ground truth labels to calculate accuracy.
  prediction_digits = np.array(prediction_digits)
  accuracy = (prediction_digits == test_labels).mean()
  return accuracy

Valuti il ​​modello potato e quantizzato e vedi che l'accuratezza di TensorFlow persiste nel backend di TFLite.

interpreter = tf.lite.Interpreter(model_content=quantized_and_pruned_tflite_model)
interpreter.allocate_tensors()

test_accuracy = evaluate_model(interpreter)

print('Pruned and quantized TFLite test_accuracy:', test_accuracy)
print('Pruned TF test accuracy:', model_for_pruning_accuracy)
Evaluated on 0 results so far.
Evaluated on 1000 results so far.
Evaluated on 2000 results so far.
Evaluated on 3000 results so far.
Evaluated on 4000 results so far.
Evaluated on 5000 results so far.
Evaluated on 6000 results so far.
Evaluated on 7000 results so far.
Evaluated on 8000 results so far.
Evaluated on 9000 results so far.


Pruned and quantized TFLite test_accuracy: 0.9722
Pruned TF test accuracy: 0.972100019454956

Conclusione

In questo tutorial, hai visto come creare modelli sparsi con l'API TensorFlow Model Optimization Toolkit per TensorFlow e TFLite. Quindi hai combinato la potatura con la quantizzazione post-allenamento per ulteriori vantaggi.

Hai creato un modello 10 volte più piccolo per MNIST, con una differenza di precisione minima.

Ti invitiamo a provare questa nuova funzionalità, che può essere particolarmente importante per la distribuzione in ambienti con risorse limitate.