在 TensorFlow.org 上查看 | 在 Google Colab 中运行 | 在 Github 上查看源代码 | 下载笔记本 | 查看 TF Hub 模型 |
概述
TensorFlow Lite 现在支持将权重转换为 8 位精度,作为从 TensorFlow GraphDef 到 TensorFlow Lite FlatBuffer 格式的模型转换的一部分。动态范围量化能使模型大小缩减至原来的四分之一。此外,TFLite 支持对激活进行实时量化和反量化以实现以下效果:
- 在可用时使用量化内核加快实现速度。
- 将计算图不同部分的浮点内核与量化内核混合。
激活始终以浮点进行存储。对于支持量化内核的算子,激活会在处理前动态量化为 8 位精度,并在处理后反量化为浮点精度。根据被转换的模型,这可以提供比纯浮点计算更快的速度。
与量化感知训练相比,在此方法中,权重会在训练后量化,激活会在推断时动态量化。因此,不会重新训练模型权重以补偿量化引起的误差。请务必检查量化模型的准确率,以确保下降程度可以接受。
本教程将从头开始训练一个 MNIST 模型,在 TensorFlow 中检查其准确率,然后使用动态范围量化将此模型转换为 Tensorflow Lite FlatBuffer 格式。最后,检查转换后模型的准确率,并将其与原始浮点模型进行比较。
构建 MNIST 模型
设置
import logging
logging.getLogger("tensorflow").setLevel(logging.DEBUG)
import tensorflow as tf
from tensorflow import keras
import numpy as np
import pathlib
训练 TensorFlow 模型
# Load MNIST dataset
mnist = keras.datasets.mnist
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()
# Normalize the input image so that each pixel value is between 0 to 1.
train_images = train_images / 255.0
test_images = test_images / 255.0
# Define the model architecture
model = keras.Sequential([
keras.layers.InputLayer(input_shape=(28, 28)),
keras.layers.Reshape(target_shape=(28, 28, 1)),
keras.layers.Conv2D(filters=12, kernel_size=(3, 3), activation=tf.nn.relu),
keras.layers.MaxPooling2D(pool_size=(2, 2)),
keras.layers.Flatten(),
keras.layers.Dense(10)
])
# Train the digit classification model
model.compile(optimizer='adam',
loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=['accuracy'])
model.fit(
train_images,
train_labels,
epochs=1,
validation_data=(test_images, test_labels)
)
在此示例中,由于您只对模型进行了一个周期的训练,因此只训练到约 96% 的准确率。
转换为 TensorFlow Lite 模型
现在,您可以使用 TensorFlow Lite Converter 将训练后的模型转换为 TensorFlow Lite 模型。
现在使用 TFLiteConverter
加载模型:
converter = tf.lite.TFLiteConverter.from_keras_model(model)
tflite_model = converter.convert()
将其写入 TFLite 文件:
tflite_models_dir = pathlib.Path("/tmp/mnist_tflite_models/")
tflite_models_dir.mkdir(exist_ok=True, parents=True)
tflite_model_file = tflite_models_dir/"mnist_model.tflite"
tflite_model_file.write_bytes(tflite_model)
要在导出时量化模型,请设置 optimizations
标记以优化大小:
converter.optimizations = [tf.lite.Optimize.DEFAULT]
tflite_quant_model = converter.convert()
tflite_model_quant_file = tflite_models_dir/"mnist_model_quant.tflite"
tflite_model_quant_file.write_bytes(tflite_quant_model)
请注意,生成文件的大小约为 1/4
。
ls -lh {tflite_models_dir}
运行 TFLite 模型
使用 Python TensorFlow Lite 解释器运行 TensorFlow Lite 模型。
将模型加载到解释器中
interpreter = tf.lite.Interpreter(model_path=str(tflite_model_file))
interpreter.allocate_tensors()
interpreter_quant = tf.lite.Interpreter(model_path=str(tflite_model_quant_file))
interpreter_quant.allocate_tensors()
在单个图像上测试模型
test_image = np.expand_dims(test_images[0], axis=0).astype(np.float32)
input_index = interpreter.get_input_details()[0]["index"]
output_index = interpreter.get_output_details()[0]["index"]
interpreter.set_tensor(input_index, test_image)
interpreter.invoke()
predictions = interpreter.get_tensor(output_index)
import matplotlib.pylab as plt
plt.imshow(test_images[0])
template = "True:{true}, predicted:{predict}"
_ = plt.title(template.format(true= str(test_labels[0]),
predict=str(np.argmax(predictions[0]))))
plt.grid(False)
评估模型
# A helper function to evaluate the TF Lite model using "test" dataset.
def evaluate_model(interpreter):
input_index = interpreter.get_input_details()[0]["index"]
output_index = interpreter.get_output_details()[0]["index"]
# Run predictions on every image in the "test" dataset.
prediction_digits = []
for test_image in test_images:
# Pre-processing: add batch dimension and convert to float32 to match with
# the model's input data format.
test_image = np.expand_dims(test_image, axis=0).astype(np.float32)
interpreter.set_tensor(input_index, test_image)
# Run inference.
interpreter.invoke()
# Post-processing: remove batch dimension and find the digit with highest
# probability.
output = interpreter.tensor(output_index)
digit = np.argmax(output()[0])
prediction_digits.append(digit)
# Compare prediction results with ground truth labels to calculate accuracy.
accurate_count = 0
for index in range(len(prediction_digits)):
if prediction_digits[index] == test_labels[index]:
accurate_count += 1
accuracy = accurate_count * 1.0 / len(prediction_digits)
return accuracy
print(evaluate_model(interpreter))
在动态范围量化模型上重复评估,以获得如下结果:
print(evaluate_model(interpreter_quant))
在此示例中,压缩后的模型在准确率方面没有差别。
优化现有模型
带有预激活层的 ResNet (ResNet-v2) 被广泛用于视觉应用。用于 ResNet-v2-101 的预训练冻结计算图可在 Tensorflow Hub 上获得。
您可以通过执行以下代码,使用量化将冻结计算图转换为 TensorFLow Lite FlatBuffer 格式:
import tensorflow_hub as hub
resnet_v2_101 = tf.keras.Sequential([
keras.layers.InputLayer(input_shape=(224, 224, 3)),
hub.KerasLayer("https://tfhub.dev/google/imagenet/resnet_v2_101/classification/4")
])
converter = tf.lite.TFLiteConverter.from_keras_model(resnet_v2_101)
# Convert to TF Lite without quantization
resnet_tflite_file = tflite_models_dir/"resnet_v2_101.tflite"
resnet_tflite_file.write_bytes(converter.convert())
# Convert to TF Lite with quantization
converter.optimizations = [tf.lite.Optimize.DEFAULT]
resnet_quantized_tflite_file = tflite_models_dir/"resnet_v2_101_quantized.tflite"
resnet_quantized_tflite_file.write_bytes(converter.convert())
ls -lh {tflite_models_dir}/*.tflite
模型大小从 171 MB 减小到 43 MB。可以使用为 TFLite 准确率测量提供的脚本来评估此模型在 ImageNet 上的准确率。
优化后模型的 Top-1 准确率为 76.8,与浮点模型相同。