TensorFlow Lite Model Maker


The TensorFlow Lite Model Maker library simplifies the process of training a TensorFlow Lite model using custom dataset. It uses transfer learning to reduce the amount of training data required and shorten the training time.

Supported Tasks

The Model Maker library currently supports the following ML tasks. Click the links below for guides on how to train the model.

Supported Tasks Task Utility
Image Classification guide Classify images into predefined categories.
Text Classification guide Classify text into predefined categories.
Question Answer guide Find the answer in a certain context for a given question.

End-to-End Example

Model Maker allows you to train a TensorFlow Lite model using custom datasets in just a few lines of code. For example, here are the steps to train an image classification model.

# Load input data specific to an on-device ML app.
data = ImageClassifierDataLoader.from_folder('flower_photos/')
train_data, test_data = data.split(0.9)

# Customize the TensorFlow model.
model = image_classifier.create(data)

# Evaluate the model.
loss, accuracy = model.evaluate(test_data)

# Export to Tensorflow Lite model and label file in `export_dir`.

For more details, see the image classification guide.


There are two ways to install Model Maker.

  • Install a prebuilt pip package.
pip install tflite-model-maker

If you want to install nightly version, please follow the command:

pip install tflite-model-maker-nightly
  • Clone the source code from GitHub and install.
git clone https://github.com/tensorflow/examples
cd examples/tensorflow_examples/lite/model_maker/pip_package
pip install -e .