Dialek TensorFlow Lite.
Dialek ini dipetakan ke operasi TensorFlow Lite.
Invarian:
- Semua nilai bertipe Tensor (khususnya, skalar direpresentasikan menggunakan tensor dimensi nol);
Operasi
tfl.abs
(TFL::AbsOp)
Operator nilai absolut
Jika diberikan tensor x
, operasi ini mengembalikan tensor yang berisi nilai absolut setiap elemen dalam x
. Misalnya, jika x adalah elemen masukan dan y adalah elemen keluaran, operasi ini akan menghitung \(y = |x|\).
Sifat: AlwaysSpeculatableImplTrait
, QuantizableResult
, SameOperandsAndResultShape
Antarmuka: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
, TflRuntimeVerifyOpInterface
Efek: MemoryEffects::Effect{}
Operan:
Operan | Keterangan |
---|---|
x | tensor bilangan bulat tanpa tanda 16-bit atau bilangan bulat tanpa tanda 32-bit atau nilai tipe float atau tipe QI8 atau QI16 32-bit |
Hasil:
Hasil | Keterangan |
---|---|
y | tensor bilangan bulat tanpa tanda 16-bit atau bilangan bulat tanpa tanda 32-bit atau nilai tipe float atau tipe QI8 atau QI16 32-bit |
tfl.add
(TFL::TambahkanOp)
Operator tambahan
Operasi penjumlahan berdasarkan elemen.
Sifat: ::mlir::OpTrait::TFLRuntimeOpTrait
, AlwaysSpeculatableImplTrait
, Commutative
, QuantizableResult
, ResultsBroadcastableShape
Antarmuka: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
, TflArithmeticCountOpInterface
, TflRuntimeVerifyOpInterface
Efek: MemoryEffects::Effect{}
Atribut:
Atribut | Tipe MLIR | Keterangan |
---|---|---|
fused_activation_function | ::mlir::StringAttr | atribut string yang nilainya NONE, atau RELU, atau RELU_N1_TO_1, atau RELU6, atau TANH, atau SIGN_BIT |
Operan:
Operan | Keterangan |
---|---|
lhs | tensor nilai float 32-bit atau bilangan bulat tanpa tanda 16-bit atau bilangan bulat tanpa tanda 32-bit atau bilangan bulat tanpa tanda 64-bit atau nilai tipe QI8 atau tipe QUI8 atau tipe QI16 |
rhs | tensor nilai float 32-bit atau bilangan bulat tanpa tanda 16-bit atau bilangan bulat tanpa tanda 32-bit atau bilangan bulat tanpa tanda 64-bit atau nilai tipe QI8 atau tipe QUI8 atau tipe QI16 |
Hasil:
Hasil | Keterangan |
---|---|
output | tensor nilai float 32-bit atau bilangan bulat tanpa tanda 16-bit atau bilangan bulat tanpa tanda 32-bit atau bilangan bulat tanpa tanda 64-bit atau nilai tipe QI8 atau tipe QUI8 atau tipe QI16 |
tfl.add_n
(TFL::TambahkanNOp)
_Tambahkan n operator
Menambahkan semua tensor masukan berdasarkan elemen.
Ciri-ciri: AlwaysSpeculatableImplTrait
, Commutative
Antarmuka: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
, SameOperandsAndResultsScale
, TflArithmeticCountOpInterface
, TflRuntimeVerifyOpInterface
Efek: MemoryEffects::Effect{}
Operan:
Operan | Keterangan |
---|---|
inputs | variadik tensor nilai jenis apa pun |
Hasil:
Hasil | Keterangan |
---|---|
sum | tensor nilai float 32-bit atau bilangan bulat tanpa tanda 32-bit |
tfl.arg_max
(TFL::ArgMaxOp)
Operator ArgMax
Mengembalikan indeks dengan nilai terbesar di seluruh dimensi tensor.
Sifat: AlwaysSpeculatableImplTrait
, QuantizableResult
Antarmuka: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
, TflRuntimeVerifyOpInterface
Efek: MemoryEffects::Effect{}
Atribut:
Atribut | Tipe MLIR | Keterangan |
---|---|---|
output_type | ::mlir::Atribut | atribut turunan |
Operan:
Operan | Keterangan |
---|---|
input | tensor bilangan bulat tak bertanda 1-bit atau float 32-bit atau bilangan bulat tak bertanda 32-bit atau bilangan bulat tak bertanda 8-bit atau bilangan bulat tak bertanda 8-bit atau nilai tipe QI8 atau tipe QUI8 |
dim | tensor nilai integer tanpa tanda 32/64-bit |
Hasil:
Hasil | Keterangan |
---|---|
output | tensor nilai integer tanpa tanda 32/64-bit |
tfl.arg_min
(TFL::ArgMinOp)
Operator ArgMin
Mengembalikan indeks dengan nilai terkecil di seluruh dimensi tensor. a = [1, 10, 26.9, 2.8, 166.32, 62.3] b = tf.math.argmin(input = a) c = tf.keras.backend.eval(b)
Sifat: AlwaysSpeculatableImplTrait
, QuantizableResult
Antarmuka: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
, TflRuntimeVerifyOpInterface
Efek: MemoryEffects::Effect{}
Atribut:
Atribut | Tipe MLIR | Keterangan |
---|---|---|
output_type | ::mlir::Atribut | atribut turunan |
Operan:
Operan | Keterangan |
---|---|
input | tensor bilangan bulat tak bertanda 1-bit atau float 32-bit atau bilangan bulat tak bertanda 32-bit atau bilangan bulat tak bertanda 8-bit atau bilangan bulat tak bertanda 8-bit atau nilai tipe QI8 atau tipe QUI8 |
dim | tensor nilai integer tanpa tanda 32/64-bit |
Hasil:
Hasil | Keterangan |
---|---|
output | tensor nilai integer tanpa tanda 32/64-bit |
tfl.assign_variable
(TFL::AssignVariableOp)
Menetapkan nilai baru ke variabel.
ReadVariableOp apa pun dengan ketergantungan kontrol pada operasi ini dijamin akan mengembalikan nilai ini atau nilai variabel berikutnya yang lebih baru.
Antarmuka: TflRuntimeVerifyOpInterface
Operan:
Operan | Keterangan |
---|---|
resource_id | tensor nilai sumber daya |
value | tensor float 32-bit atau float 64-bit atau bilangan bulat tak bertanda 1-bit atau bilangan bulat tak bertanda 8-bit atau bilangan bulat tak bertanda 8-bit atau tipe QI8 atau tipe QUI8 atau bilangan bulat tak bertanda 32-bit atau bilangan bulat tak bertanda 64-bit atau tipe QI16 atau tipe kompleks dengan elemen float 32-bit atau tipe kompleks dengan nilai elemen float 64-bit |
tfl.atan2
(TFL::Atan2Op)
Operasi Atan2
Operasi "atan2" menghitung tangen busur dari elemen y/x, dengan memperhatikan tanda-tanda argumen.
Sifat: AlwaysSpeculatableImplTrait
, SameOperandsAndResultElementType
, SameOperandsAndResultShape
Antarmuka: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
, TflRuntimeVerifyOpInterface
Efek: MemoryEffects::Effect{}
Operan:
Operan | Keterangan |
---|---|
y | tensor nilai float 32-bit atau nilai float 64-bit |
x | tensor nilai float 32-bit atau nilai float 64-bit |
Hasil:
Hasil | Keterangan |
---|---|
output | tensor nilai float 32-bit atau nilai float 64-bit |
tfl.average_pool_2d
(TFL::AveragePool2DOp)
_Rata-rata_kumpulan operator 2 hari
Melakukan operasi pengumpulan rata-rata pada input.
Sifat: AlwaysSpeculatableImplTrait
, QuantizableResult
Antarmuka: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
, SameOperandsAndResultsScale
, TflArithmeticCountOpInterface
, TflRuntimeVerifyOpInterface
Efek: MemoryEffects::Effect{}
Atribut:
Atribut | Tipe MLIR | Keterangan |
---|---|---|
filter_height | ::mlir::IntegerAttr | Atribut bilangan bulat tanpa tanda 32-bit |
filter_width | ::mlir::IntegerAttr | Atribut bilangan bulat tanpa tanda 32-bit |
padding | ::mlir::StringAttr | atribut string yang nilainya SAMA, atau VALID |
stride_h | ::mlir::IntegerAttr | Atribut bilangan bulat tanpa tanda 32-bit |
stride_w | ::mlir::IntegerAttr | Atribut bilangan bulat tanpa tanda 32-bit |
fused_activation_function | ::mlir::StringAttr | atribut string yang nilainya NONE, atau RELU, atau RELU_N1_TO_1, atau RELU6, atau TANH, atau SIGN_BIT |
Operan:
Operan | Keterangan |
---|---|
input | tensor nilai tipe float atau QI8 32-bit atau tipe QUI8 atau tipe QI16 |
Hasil:
Hasil | Keterangan |
---|---|
output | tensor nilai tipe float atau QI8 32-bit atau tipe QUI8 atau tipe QI16 |
tfl.basic_lstm
(TFL::BasicLSTMOp)
Operator lstm dasar
Operator Seluler LSTM dasar.
Sifat: AlwaysSpeculatableImplTrait
, QuantizableResult
Antarmuka: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
, TflRuntimeVerifyOpInterface
Efek: MemoryEffects::Effect{}
Atribut:
Atribut | Tipe MLIR | Keterangan |
---|---|---|
fused_activation_function | ::mlir::StringAttr | atribut string yang nilainya NONE, atau RELU, atau RELU_N1_TO_1, atau RELU6, atau TANH, atau SIGN_BIT |
cell_clip | ::mlir::FloatAttr | Atribut float 32-bit yang nilainya non-negatif |
proj_clip | ::mlir::FloatAttr | Atribut float 32-bit yang nilainya non-negatif |
kernel_type | ::mlir::TFL::LSTMKernelTypeAttr | lstm_kernel_type yang nilainya mlir::TFL::LSTMKernelType::BASIC |
Operan:
Operan | Keterangan |
---|---|
data_input | tensor nilai tipe float 32-bit atau QUI8 |
prev_activ_input | tensor nilai tipe float 32-bit atau QUI8 |
weights_input | tensor nilai tipe float 32-bit atau QUI8 |
biases_input | tensor nilai tipe float 32-bit atau QI32 |
prev_state_input | tensor nilai tipe float 32-bit atau QI16 |
Hasil:
Hasil | Keterangan |
---|---|
activ_output | Tensor 2D dari nilai jenis apa pun |
state_output | Tensor 2D dari nilai jenis apa pun |
concat_temp | Tensor 2D dari nilai jenis apa pun |
activ_temp | Tensor 2D dari nilai jenis apa pun |
tfl.batch_matmul
(TFL::BatchMatMulOp)
Operator Penggandaan Matriks Batch
Melakukan perkalian matriks batch pada input. Mengikuti konvensi TensorFlow BatchMatMulV2, dengan dukungan untuk dimensi yang tidak diketahui dalam dimensi batch dan penyiaran.
Inputs:
`inputs[0]`: required: input LHS
`inputs[1]`: required: input RHS
`adjoint_lhs`: optional: Transpose LHS (default false)
`adjoint_rhs`: optional: Transpose RHS (default false)
Sifat: ::mlir::OpTrait::TFLRuntimeOpTrait
, AlwaysSpeculatableImplTrait
, QuantizableResult
Antarmuka: ConditionallySpeculatable
, DynamicRangeQuantizedOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
, TflRuntimeVerifyOpInterface
Efek: MemoryEffects::Effect{}
Atribut:
Atribut | Tipe MLIR | Keterangan |
---|---|---|
adj_x | ::mlir::BoolAttr | atribut bool |
adj_y | ::mlir::BoolAttr | atribut bool |
asymmetric_quantize_inputs | ::mlir::BoolAttr | atribut bool |
Operan:
Operan | Keterangan |
---|---|
x | tensor tipe float 32-bit atau QI8 atau tipe QI16 atau nilai integer tanpa tanda 8-bit |
y | tensor tipe float 32-bit atau QI8 atau tipe QI16 atau nilai integer tanpa tanda 8-bit |
Hasil:
Hasil | Keterangan |
---|---|
output | tensor tipe float 32-bit atau QI8 atau tipe QI16 atau nilai integer tanpa tanda 32-bit |
tfl.batch_to_space_nd
(TFL::BatchToSpaceNdOp)
Operator BatchToSpaceNd
Operasi ini membentuk ulang dimensi "batch" 0 menjadi dimensi ruang.
Sifat: AlwaysSpeculatableImplTrait
, QuantizableResult
Antarmuka: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
, SameOperandsAndResultsScale
, TflRuntimeVerifyOpInterface
Efek: MemoryEffects::Effect{}
Operan:
Operan | Keterangan |
---|---|
input | tensor bilangan bulat tak bertanda 32-bit atau bilangan bulat tak bertanda 8-bit atau bilangan bulat tak bertanda 32-bit atau bilangan bulat tak bertanda 64-bit atau bilangan bulat tak bertanda 8-bit atau nilai tipe QI8 atau tipe QUI8 atau tipe QI16 |
block_shape | tensor nilai integer tanpa tanda 32-bit |
indices | tensor nilai integer tanpa tanda 32-bit |
Hasil:
Hasil | Keterangan |
---|---|
output | Tensor float 32-bit atau bilangan bulat tanpa tanda 16-bit atau bilangan bulat tanpa tanda 32-bit atau bilangan bulat tanpa tanda 64-bit atau bilangan bulat tak bertanda 8-bit atau nilai tipe QI8 atau tipe QUI8 atau tipe QI16 |
tfl.bidirectional_sequence_lstm
(TFL::BidirectSequenceLSTMOp)
Operator lstm urutan dua arah
Lstm dua arah pada dasarnya adalah dua lstm, satu berjalan maju & yang lainnya berjalan mundur. Dan outputnya adalah gabungan dari dua lstm.
Ciri-ciri: QuantizableResult
Antarmuka: DynamicRangeQuantizedOpInterface
, TFL_StatefulOp
, TflRuntimeVerifyOpInterface
Atribut:
Atribut | Tipe MLIR | Keterangan |
---|---|---|
fused_activation_function | ::mlir::StringAttr | atribut string yang nilainya NONE, atau RELU, atau RELU_N1_TO_1, atau RELU6, atau TANH, atau SIGN_BIT |
cell_clip | ::mlir::FloatAttr | Atribut float 32-bit yang nilainya non-negatif |
proj_clip | ::mlir::FloatAttr | Atribut float 32-bit yang nilainya non-negatif |
merge_outputs | ::mlir::BoolAttr | atribut bool |
time_major | ::mlir::BoolAttr | atribut bool |
asymmetric_quantize_inputs | ::mlir::BoolAttr | atribut bool |
Operan:
Operan | Keterangan |
---|---|
input | tensor nilai integer 32-bit float atau 8-bit signless |
fw_input_to_input_weights | tensor nilai tipe apa pun atau tipe apa pun |
fw_input_to_forget_weights | tensor nilai integer 32-bit float atau 8-bit signless |
fw_input_to_cell_weights | tensor nilai integer 32-bit float atau 8-bit signless |
fw_input_to_output_weights | tensor nilai integer 32-bit float atau 8-bit signless |
fw_recurrent_to_input_weights | tensor nilai tipe apa pun atau tipe apa pun |
fw_recurrent_to_forget_weights | tensor nilai integer 32-bit float atau 8-bit signless |
fw_recurrent_to_cell_weights | tensor nilai integer 32-bit float atau 8-bit signless |
fw_recurrent_to_output_weights | tensor nilai integer 32-bit float atau 8-bit signless |
fw_cell_to_input_weights | tensor nilai tipe apa pun atau tipe apa pun |
fw_cell_to_forget_weights | tensor nilai tipe apa pun atau tipe apa pun |
fw_cell_to_output_weights | tensor nilai tipe apa pun atau tipe apa pun |
fw_input_gate_bias | tensor nilai tipe apa pun atau tipe apa pun |
fw_forget_gate_bias | tensor nilai float 32-bit |
fw_cell_bias | tensor nilai float 32-bit |
fw_output_gate_bias | tensor nilai float 32-bit |
fw_projection_weights | tensor nilai tipe apa pun atau tipe apa pun |
fw_projection_bias | tensor nilai tipe apa pun atau tipe apa pun |
bw_input_to_input_weights | tensor nilai tipe apa pun atau tipe apa pun |
bw_input_to_forget_weights | tensor nilai integer 32-bit float atau 8-bit signless |
bw_input_to_cell_weights | tensor nilai integer 32-bit float atau 8-bit signless |
bw_input_to_output_weights | tensor nilai integer 32-bit float atau 8-bit signless |
bw_recurrent_to_input_weights | tensor nilai tipe apa pun atau tipe apa pun |
bw_recurrent_to_forget_weights | tensor nilai integer 32-bit float atau 8-bit signless |
bw_recurrent_to_cell_weights | tensor nilai integer 32-bit float atau 8-bit signless |
bw_recurrent_to_output_weights | tensor nilai integer 32-bit float atau 8-bit signless |
bw_cell_to_input_weights | tensor nilai tipe apa pun atau tipe apa pun |
bw_cell_to_forget_weights | tensor nilai tipe apa pun atau tipe apa pun |
bw_cell_to_output_weights | tensor nilai tipe apa pun atau tipe apa pun |
bw_input_gate_bias | tensor nilai tipe apa pun atau tipe apa pun |
bw_forget_gate_bias | tensor nilai float 32-bit |
bw_cell_bias | tensor nilai float 32-bit |
bw_output_gate_bias | tensor nilai float 32-bit |
bw_projection_weights | tensor nilai tipe apa pun atau tipe apa pun |
bw_projection_bias | tensor nilai tipe apa pun atau tipe apa pun |
fw_input_activation_state | tensor keadaan |
fw_input_cell_state | tensor keadaan |
bw_input_activation_state | tensor keadaan |
bw_input_cell_state | tensor keadaan |
aux_input | tensor nilai tipe apa pun atau tipe apa pun |
fw_aux_input_to_input_weights | tensor nilai tipe apa pun atau tipe apa pun |
fw_aux_input_to_forget_weights | tensor nilai tipe apa pun atau tipe apa pun |
fw_aux_input_to_cell_weights | tensor nilai tipe apa pun atau tipe apa pun |
fw_aux_input_to_output_weights | tensor nilai tipe apa pun atau tipe apa pun |
bw_aux_input_to_input_weights | tensor nilai tipe apa pun atau tipe apa pun |
bw_aux_input_to_forget_weights | tensor nilai tipe apa pun atau tipe apa pun |
bw_aux_input_to_cell_weights | tensor nilai tipe apa pun atau tipe apa pun |
bw_aux_input_to_output_weights | tensor nilai tipe apa pun atau tipe apa pun |
Hasil:
Hasil | Keterangan |
---|---|
fw_output | tensor nilai tipe apa pun |
bw_output | tensor nilai tipe apa pun |
tfl.bitcast
(TFL::BitcastOp)
Operator Bitcast
Mem-bitcast tensor dari satu jenis ke jenis lainnya.
Ciri-ciri: AlwaysSpeculatableImplTrait
Antarmuka: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
, TflRuntimeVerifyOpInterface
Efek: MemoryEffects::Effect{}
Operan:
Operan | Keterangan |
---|---|
input | tensor nilai jenis apa pun |
Hasil:
Hasil | Keterangan |
---|---|
output | tensor nilai jenis apa pun |
tfl.bitwise_xor
(TFL::BitwiseXorOp)
Operator Xor bitwise
Elementwise menghitung XOR bitwise dari lhs
dan rhs
.
Sifat: AlwaysSpeculatableImplTrait
, Commutative
, ResultsBroadcastableShape
, SameOperandsAndResultElementType
Antarmuka: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
, TflRuntimeVerifyOpInterface
Efek: MemoryEffects::Effect{}
Operan:
Operan | Keterangan |
---|---|
lhs | tensor bilangan bulat tak bertanda 8-bit atau bilangan bulat tak bertanda 8-bit atau bilangan bulat tak bertanda 16-bit atau bilangan bulat tak bertanda 16-bit atau bilangan bulat tak bertanda 32-bit atau nilai bilangan bulat tak bertanda 32-bit |
rhs | tensor bilangan bulat tak bertanda 8-bit atau bilangan bulat tak bertanda 8-bit atau bilangan bulat tak bertanda 16-bit atau bilangan bulat tak bertanda 16-bit atau bilangan bulat tak bertanda 32-bit atau nilai bilangan bulat tak bertanda 32-bit |
Hasil:
Hasil | Keterangan |
---|---|
output | tensor bilangan bulat tak bertanda 8-bit atau bilangan bulat tak bertanda 8-bit atau bilangan bulat tak bertanda 16-bit atau bilangan bulat tak bertanda 16-bit atau bilangan bulat tak bertanda 32-bit atau nilai bilangan bulat tak bertanda 32-bit |
tfl.broadcast_args
(TFL::BroadcastArgsOp)
Kembalikan bentuk s0 op s1 dengan siaran.
Mengingat s0
dan s1
, tensor yang merepresentasikan bentuk, hitung r0
, bentuk yang disiarkan. s0
, s1
dan r0
semuanya adalah vektor bilangan bulat.
Ciri-ciri: AlwaysSpeculatableImplTrait
Antarmuka: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
, TflRuntimeVerifyOpInterface
Efek: MemoryEffects::Effect{}
Operan:
Operan | Keterangan |
---|---|
s0 | tensor nilai integer tanpa tanda 32/64-bit |
s1 | tensor nilai integer tanpa tanda 32/64-bit |
Hasil:
Hasil | Keterangan |
---|---|
r0 | tensor nilai integer tanpa tanda 32/64-bit |
tfl.broadcast_to
(TFL::BroadcastToOp)
Siarkan array untuk bentuk yang kompatibel.
Penyiaran adalah proses membuat array memiliki bentuk yang kompatibel untuk operasi aritmatika. Dua bentuk dikatakan kompatibel jika untuk setiap pasangan dimensi keduanya sama atau salah satunya adalah satu. Saat mencoba menyiarkan Tensor ke suatu bentuk, Tensor dimulai dengan dimensi tambahan, dan terus berlanjut.
Misalnya,
x = tf.constant([1, 2, 3]) y = tf.broadcast_to(x, [3, 3]) print(y) tf.Tensor( [[1 2 3] [1 2 3] [1 2 3]], bentuk=(3, 3), tiped=int32)
Pada contoh di atas, Tensor masukan berbentuk [1, 3]
disiarkan ke Tensor keluaran berbentuk [3, 3]
.
Saat melakukan operasi penyiaran seperti mengalikan tensor dengan skalar, penyiaran (biasanya) memberikan manfaat waktu atau ruang, karena tensor yang disiarkan tidak pernah terwujud.
Namun, broadcast_to
tidak memberikan manfaat apa pun. Tensor yang baru dibuat mengambil memori penuh dari bentuk yang disiarkan. (Namun, dalam konteks grafik, broadcast_to
mungkin digabungkan ke operasi berikutnya dan kemudian dioptimalkan.)
Sifat: AlwaysSpeculatableImplTrait
, QuantizableResult
Antarmuka: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
, TflRuntimeVerifyOpInterface
Efek: MemoryEffects::Effect{}
Operan:
Operan | Keterangan |
---|---|
input | tensor float 32-bit atau bilangan bulat tanpa tanda 32-bit atau bilangan bulat tanpa tanda 1-bit atau bilangan bulat tanpa tanda 4-bit atau bilangan bulat tanpa tanda 8-bit atau tipe QI8 atau bilangan bulat tak bertanda 8-bit atau bilangan bulat tak bertanda 32-bit atau tipe QUI8 atau 16 -bit integer tanpa tanda atau tipe QI16 atau integer tanpa tanda 64-bit atau tipe kompleks dengan nilai elemen float 32-bit |
shape | tensor nilai integer tanpa tanda 32/64-bit |
Hasil:
Hasil | Keterangan |
---|---|
output | tensor float 32-bit atau bilangan bulat tanpa tanda 32-bit atau bilangan bulat tanpa tanda 1-bit atau bilangan bulat tanpa tanda 4-bit atau bilangan bulat tanpa tanda 8-bit atau tipe QI8 atau bilangan bulat tak bertanda 8-bit atau bilangan bulat tak bertanda 32-bit atau tipe QUI8 atau 16 -bit integer tanpa tanda atau tipe QI16 atau integer tanpa tanda 64-bit atau tipe kompleks dengan nilai elemen float 32-bit |
tfl.bucketize
(TFL::BucketizeOp)
Mengelompokkan 'masukan' berdasarkan 'batas'.
Contoh:
Jika masukannya adalah boundaries = [0, 10, 100]
dan input = [[-5, 10000][150, 10][5, 100]]
, maka keluarannya adalah output = [[0, 3][3, 2][1, 3]]
.
Ciri-ciri: AlwaysSpeculatableImplTrait
, SameOperandsAndResultShape
Antarmuka: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
, TflRuntimeVerifyOpInterface
Efek: MemoryEffects::Effect{}
Atribut:
Atribut | Tipe MLIR | Keterangan |
---|---|---|
boundaries | ::mlir::ArrayAttr | Atribut array float 32-bit |
Operan:
Operan | Keterangan |
---|---|
input | tensor nilai float 32-bit atau float 64-bit atau bilangan bulat tanpa tanda 32-bit atau nilai bilangan bulat tanpa tanda 64-bit |
Hasil:
Hasil | Keterangan |
---|---|
output | tensor nilai integer tanpa tanda 32-bit |
tfl.call_once
(TFL::CallOnceOp)
Memanggil fungsi inisialisasi
Operasi ini memanggil fungsi inisialisasi yang diberikan untuk penginisialisasi sesi dalam dialek model yang disimpan tf.
Antarmuka: TflRuntimeVerifyOpInterface
Atribut:
Atribut | Tipe MLIR | Keterangan |
---|---|---|
session_init_function | ::mlir::StringAttr | atribut string |
tfl.cast
(TFL::CastOp)
Operator pemeran
Melemparkan input dari tipe input ke tipe output.
Ciri-ciri: AlwaysSpeculatableImplTrait
, SameOperandsAndResultShape
Antarmuka: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
, TflRuntimeVerifyOpInterface
Efek: MemoryEffects::Effect{}
Operan:
Operan | Keterangan |
---|---|
input | tensor tipe float 16-bit atau bfloat16 atau float 32-bit atau float 64-bit atau bilangan bulat tak bertanda 1-bit atau bilangan bulat tak bertanda 4-bit atau bilangan bulat tak bertanda 16-bit atau bilangan bulat tak bertanda 16-bit atau bilangan bulat tak bertanda 32-bit atau Bilangan bulat tak bertanda 32-bit atau bilangan bulat tak bertanda 64-bit atau tipe TFLite quint8 atau bilangan bulat tak bertanda 8-bit atau bilangan bulat tak bertanda 8-bit atau tipe kompleks dengan nilai elemen float 32-bit |
Hasil:
Hasil | Keterangan |
---|---|
output | tensor tipe float 16-bit atau bfloat16 atau float 32-bit atau float 64-bit atau integer tak bertanda 1-bit atau integer tak bertanda 16-bit atau integer tak bertanda 16-bit atau integer tak bertanda 32-bit atau integer tak bertanda 32-bit atau Integer tak bertanda 64-bit atau tipe TFLite quint8 atau bilangan bulat tak bertanda 8-bit atau bilangan bulat tak bertanda 8-bit atau tipe kompleks dengan nilai elemen float 32-bit |
tfl.ceil
(TFL::CeilOp)
Operator langit-langit
Mengembalikan nilai ceil berdasarkan elemen dari input.
Sifat: AlwaysSpeculatableImplTrait
, InferTensorType
, TF::SameOperandsAndResultTypeResolveRef
Antarmuka: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
, TflRuntimeVerifyOpInterface
Efek: MemoryEffects::Effect{}
Operan:
Operan | Keterangan |
---|---|
x | tensor nilai float 32-bit |
Hasil:
Hasil | Keterangan |
---|---|
y | tensor nilai float 32-bit |
tfl.complex_abs
(TFL::ComplexAbsOp)
Menghitung nilai absolut kompleks dari sebuah tensor.
Diberikan tensor x
bilangan kompleks, operasi ini mengembalikan tensor bertipe float
atau double
yang merupakan nilai absolut setiap elemen dalam x
. Semua elemen dalam x
harus berbentuk bilangan kompleks \(a + bj\). Nilai absolut dihitung sebagai \( \sqrt{a^2 + b^2}\).
Ciri-ciri: AlwaysSpeculatableImplTrait
, SameOperandsAndResultShape
Antarmuka: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
, TflRuntimeVerifyOpInterface
Efek: MemoryEffects::Effect{}
Operan:
Operan | Keterangan |
---|---|
input | tensor tipe kompleks dengan elemen float 32-bit atau tipe kompleks dengan nilai elemen float 64-bit |
Hasil:
Hasil | Keterangan |
---|---|
output | tensor nilai float 32-bit atau nilai float 64-bit |
tfl.concatenation
(TFL::PenggabunganOp)
Operator penggabungan
Menggabungkan tensor sepanjang satu dimensi
Sifat: AlwaysSpeculatableImplTrait
, QuantizableResult
Antarmuka: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
, SameOperandsAndResultsScale
, TflRuntimeVerifyOpInterface
Efek: MemoryEffects::Effect{}
Atribut:
Atribut | Tipe MLIR | Keterangan |
---|---|---|
axis | ::mlir::IntegerAttr | Atribut bilangan bulat tanpa tanda 32-bit |
fused_activation_function | ::mlir::StringAttr | atribut string yang nilainya NONE, atau RELU, atau RELU_N1_TO_1, atau RELU6, atau TANH, atau SIGN_BIT |
Operan:
Operan | Keterangan |
---|---|
values | variadik tensor nilai jenis apa pun |
Hasil:
Hasil | Keterangan |
---|---|
output | tensor bilangan bulat 32-bit atau bilangan bulat tanpa tanda 64-bit atau bilangan bulat tanpa tanda 32-bit atau bilangan bulat tanpa tanda 16-bit atau bilangan bulat tanpa tanda 8-bit atau tipe QI8 atau tipe QUI8 atau bilangan bulat tak bertanda 8-bit atau bilangan bulat tak bertanda 32-bit atau 1 -bit nilai integer tanpa tanda |
tfl.control_node
(TFL::ControlNodeOp)
Operasi TFL.control_node
membungkus operasi blok tunggal untuk melampirkan tepi kontrol.
Ini digunakan untuk menggabungkan wilayah dan melampirkan dependensi kontrol ke wilayah tersebut. Biasanya, hal ini akan terjadi pada salah satu langkah terakhir sebelum memancarkan model flatbuffer untuk mengaktifkan pengoptimalan yang bergantung pada urutan operasi tetap (seperti rematerialisasi.) Eksportir flatbuffer akan membuka bungkusan wilayah yang dibungkus dan memberi anotasi pada model yang dihasilkan dengan metadata sedemikian rupa sehingga setiap pemesanan ulang runtime akan mengikuti urutan yang diberikan oleh dependensi kontrol.
Sifat: HasParent<mlir::func::FuncOp>
, RecursiveMemoryEffects
, SingleBlockImplicitTerminator<YieldOp>
, SingleBlock
Operan:
Operan | Keterangan |
---|---|
controlInputs | variadik kendali |
Hasil:
Hasil | Keterangan |
---|---|
outputs | variadik tensor nilai jenis apa pun |
control | kontrol |
tfl.conv_2d
(TFL::Konv2DOp)
Operator konvolusi
Melakukan operasi konvolusi pada input.
Input: inputs[0]
: diperlukan: tensor aktivasi input inputs[1]
: diperlukan: inputs[2]
: opsional: tensor bias
Sifat: AlwaysSpeculatableImplTrait
, QuantizableResult
, quant::AccumulatorUniformScale<2, 0, 1>
, quant::AffineOpCoefficient<0, 1>
Antarmuka: AffineQuantizedOpInterface
, ConditionallySpeculatable
, DynamicRangeQuantizedOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
, TFL_SparseOp
, TflArithmeticCountOpInterface
, TflRuntimeVerifyOpInterface
Efek: MemoryEffects::Effect{}
Atribut:
Atribut | Tipe MLIR | Keterangan |
---|---|---|
dilation_h_factor | ::mlir::IntegerAttr | Atribut bilangan bulat tanpa tanda 32-bit |
dilation_w_factor | ::mlir::IntegerAttr | Atribut bilangan bulat tanpa tanda 32-bit |
fused_activation_function | ::mlir::StringAttr | atribut string yang nilainya NONE, atau RELU, atau RELU_N1_TO_1, atau RELU6, atau TANH, atau SIGN_BIT |
padding | ::mlir::StringAttr | atribut string yang nilainya SAMA, atau VALID |
stride_h | ::mlir::IntegerAttr | Atribut bilangan bulat tanpa tanda 32-bit |
stride_w | ::mlir::IntegerAttr | Atribut bilangan bulat tanpa tanda 32-bit |
Operan:
Operan | Keterangan |
---|---|
input | tensor nilai tipe float atau QI8 32-bit atau tipe QUI8 atau tipe QI16 |
filter | tensor nilai tipe float atau QI4 32-bit atau tipe QI8 atau tipe QUI8 |
bias | tensor nilai tipe apa pun atau tipe apa pun |
Hasil:
Hasil | Keterangan |
---|---|
output | tensor nilai tipe float atau QI8 32-bit atau tipe QUI8 atau tipe QI16 |
tfl.conv_3d
(TFL::Konv3DOp)
Operator 3D konvolusi
Melakukan operasi konvolusi pada input 3D. Input: inputs[0]
: diperlukan: tensor aktivasi input inputs[1]
: diperlukan: inputs[2]
: opsional: tensor bias
Sifat: AlwaysSpeculatableImplTrait
, quant::AccumulatorUniformScale<2, 0, 1>
Antarmuka: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
, TflRuntimeVerifyOpInterface
Efek: MemoryEffects::Effect{}
Atribut:
Atribut | Tipe MLIR | Keterangan |
---|---|---|
dilation_d_factor | ::mlir::IntegerAttr | Atribut bilangan bulat tanpa tanda 32-bit |
dilation_h_factor | ::mlir::IntegerAttr | Atribut bilangan bulat tanpa tanda 32-bit |
dilation_w_factor | ::mlir::IntegerAttr | Atribut bilangan bulat tanpa tanda 32-bit |
fused_activation_function | ::mlir::StringAttr | atribut string yang nilainya NONE, atau RELU, atau RELU_N1_TO_1, atau RELU6, atau TANH, atau SIGN_BIT |
padding | ::mlir::StringAttr | atribut string yang nilainya SAMA, atau VALID |
stride_d | ::mlir::IntegerAttr | Atribut bilangan bulat tanpa tanda 32-bit |
stride_h | ::mlir::IntegerAttr | Atribut bilangan bulat tanpa tanda 32-bit |
stride_w | ::mlir::IntegerAttr | Atribut bilangan bulat tanpa tanda 32-bit |
Operan:
Operan | Keterangan |
---|---|
input | tensor nilai float 32-bit |
filter | tensor nilai float 32-bit |
bias | tensor nilai tipe apa pun atau tipe apa pun |
Hasil:
Hasil | Keterangan |
---|---|
output | tensor nilai float 32-bit |
tfl.conv_3d_transpose
(TFL::Conv3DTransposeOp)
Operator 3D Konvolusi yang Dialihkan
Melakukan operasi konvolusi yang dialihkan pada input 3D. Inputs: inputs[0]
: diperlukan: bentuk tensor keluaran inputs[1]
: diperlukan: filter tensor bobot inputs[2]
: diperlukan: aktivasi masukan tensor inputs[3]
: opsional: tensor bias
Sifat: AlwaysSpeculatableImplTrait
, quant::AccumulatorUniformScale<2, 0, 1>
Antarmuka: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
, TflRuntimeVerifyOpInterface
Efek: MemoryEffects::Effect{}
Atribut:
Atribut | Tipe MLIR | Keterangan |
---|---|---|
dilation_d_factor | ::mlir::IntegerAttr | Atribut bilangan bulat tanpa tanda 32-bit |
dilation_h_factor | ::mlir::IntegerAttr | Atribut bilangan bulat tanpa tanda 32-bit |
dilation_w_factor | ::mlir::IntegerAttr | Atribut bilangan bulat tanpa tanda 32-bit |
fused_activation_function | ::mlir::StringAttr | atribut string yang nilainya NONE, atau RELU, atau RELU_N1_TO_1, atau RELU6, atau TANH, atau SIGN_BIT |
padding | ::mlir::StringAttr | atribut string yang nilainya SAMA, atau VALID |
stride_d | ::mlir::IntegerAttr | Atribut bilangan bulat tanpa tanda 32-bit |
stride_h | ::mlir::IntegerAttr | Atribut bilangan bulat tanpa tanda 32-bit |
stride_w | ::mlir::IntegerAttr | Atribut bilangan bulat tanpa tanda 32-bit |
Operan:
Operan | Keterangan |
---|---|
output_shape | tensor nilai integer tanpa tanda 32-bit |
filter | tensor nilai float 32-bit |
input | tensor nilai float 32-bit |
bias | tensor nilai tipe apa pun atau tipe apa pun |
Hasil:
Hasil | Keterangan |
---|---|
output | tensor nilai float 32-bit |
tfl.cos
(TFL::CosOp)
Operator kosinus
Menghitung kosinus input berdasarkan elemen
Sifat: AlwaysSpeculatableImplTrait
, InferTensorType
, TF::SameOperandsAndResultTypeResolveRef
Antarmuka: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
, TflRuntimeVerifyOpInterface
Efek: MemoryEffects::Effect{}
Operan:
Operan | Keterangan |
---|---|
x | tensor nilai float 32-bit |
Hasil:
Hasil | Keterangan |
---|---|
y | tensor nilai float 32-bit |
tfl.cumsum
(TFL::CumsumOp)
Operator cumsum
Hitung jumlah kumulatif tensor x sepanjang sumbu.
Ciri-ciri: AlwaysSpeculatableImplTrait
Antarmuka: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
, TflRuntimeVerifyOpInterface
Efek: MemoryEffects::Effect{}
Atribut:
Atribut | Tipe MLIR | Keterangan |
---|---|---|
exclusive | ::mlir::BoolAttr | atribut bool |
reverse | ::mlir::BoolAttr | atribut bool |
Operan:
Operan | Keterangan |
---|---|
input | tensor nilai float 32-bit atau bilangan bulat tanpa tanda 32-bit atau bilangan bulat tanpa tanda 64-bit |
axis | tensor nilai integer tanpa tanda 32-bit |
Hasil:
Hasil | Keterangan |
---|---|
output | tensor nilai float 32-bit atau bilangan bulat tanpa tanda 32-bit atau bilangan bulat tanpa tanda 64-bit |
tfl.custom
(TFL::CustomOp)
Operasi khusus
Operasi umum untuk operasi kustom TFLite apa pun.
input: Daftar input dalam operasi asli. custom_code: Sebuah string yang digunakan untuk mengidentifikasi operasi mana yang sebenarnya, yang sesuai dengan operator_codes.custom_code di flatbuffer. custom_option: pemegang untuk menyimpan atribut op dalam mode byte. keluaran: Daftar keluaran dalam operasi asli.
Antarmuka: TflRuntimeVerifyOpInterface
Atribut:
Atribut | Tipe MLIR | Keterangan |
---|---|---|
custom_code | ::mlir::StringAttr | atribut string |
custom_option | ::mlir::TFL::ConstBytesAttr | Representasi atribut string dari byte yang dikompilasi |
Operan:
Operan | Keterangan |
---|---|
input | variadik tensor nilai tipe apa pun atau tipe apa pun |
Hasil:
Hasil | Keterangan |
---|---|
output | variadik tensor nilai jenis apa pun |
tfl.custom_tf
(TFL::CustomTfOp)
Operasi Pembungkus untuk operasi khusus TF.
Operasi pembungkus di sekitar operasi TF Kustom apa pun. Ini termasuk operasi yang ditentukan menggunakan custom_opdefs atau tertaut yang tidak ditentukan dalam dialek TF. Operasi ini hanya menggabungkan operasi khusus di dalam suatu wilayah. Catatan #1, Operasi ini tidak akan menyertakan operasi kustom TF Lite yang ditentukan menggunakan CustomOp. Catatan #2, operasi ini hanyalah representasi internal di dalam konverter dan tidak diekspos/diekspor saat model diekspor ke Flatbuffer.
Sifat: IsolatedFromAbove
, RecursiveMemoryEffects
, SingleBlockImplicitTerminator<YieldOp>
, SingleBlock
Antarmuka: InferTypeOpInterface
, TflRuntimeVerifyOpInterface
Operan:
Operan | Keterangan |
---|---|
input | variadik tensor nilai tipe apa pun atau tipe apa pun |
Hasil:
Hasil | Keterangan |
---|---|
output | variadik tensor nilai jenis apa pun |
tfl.densify
(TFL::DensifyOp)
Padatkan operator
Mengonversi tensor renggang menjadi format padat.
Ciri-ciri: AlwaysSpeculatableImplTrait
Antarmuka: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
, TflRuntimeVerifyOpInterface
Efek: MemoryEffects::Effect{}
Operan:
Operan | Keterangan |
---|---|
input | tensor nilai integer 32-bit float atau 8-bit signless |
Hasil:
Hasil | Keterangan |
---|---|
output | tensor nilai integer 32-bit float atau 8-bit signless |
tfl.depth_to_space
(TFL::DepthToSpaceOp)
Operator DepthToSpace
Menyusun ulang data dari kedalaman menjadi blok data spasial. Ini adalah transformasi kebalikan dari SpaceToDepth. Lebih khusus lagi, operasi ini menghasilkan salinan tensor masukan di mana nilai dari dimensi depth
dipindahkan dalam blok spasial ke dimensi height
dan width
. attr block_size
menunjukkan ukuran blok masukan dan cara data dipindahkan.
Sifat: AlwaysSpeculatableImplTrait
, QuantizableResult
Antarmuka: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
, SameOperandsAndResultsScale
, TflRuntimeVerifyOpInterface
Efek: MemoryEffects::Effect{}
Atribut:
Atribut | Tipe MLIR | Keterangan |
---|---|---|
block_size | ::mlir::IntegerAttr | Atribut bilangan bulat tak bertanda 32-bit yang nilainya positif |
Operan:
Operan | Keterangan |
---|---|
input | tensor bilangan bulat tak bertanda 32-bit atau bilangan bulat tak bertanda 8-bit atau bilangan bulat tak bertanda 32-bit atau bilangan bulat tak bertanda 64-bit atau tipe TFLite quint8 atau bilangan bulat tak bertanda 8-bit atau nilai tipe QI8 atau tipe QUI8 |
Hasil:
Hasil | Keterangan |
---|---|
output | tensor bilangan bulat tak bertanda 32-bit atau bilangan bulat tak bertanda 8-bit atau bilangan bulat tak bertanda 32-bit atau bilangan bulat tak bertanda 64-bit atau tipe TFLite quint8 atau bilangan bulat tak bertanda 8-bit atau nilai tipe QI8 atau tipe QUI8 |
tfl.depthwise_conv_2d
(TFL::DepthwiseConv2DOp)
Operator konvolusi yang dapat dipisahkan secara mendalam
Melakukan operasi konvolusi pada input.
Input: inputs[0]
: diperlukan: tensor aktivasi input inputs[1]
: diperlukan: inputs[2]
: opsional: tensor bias
Sifat: AlwaysSpeculatableImplTrait
, QuantizableResult
, quant::AccumulatorUniformScale<2, 0, 1>
, quant::AffineOpCoefficient<3, 1>
Antarmuka: AffineQuantizedOpInterface
, ConditionallySpeculatable
, DynamicRangeQuantizedOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
, TFL_SparseOp
, TflArithmeticCountOpInterface
, TflRuntimeVerifyOpInterface
Efek: MemoryEffects::Effect{}
Atribut:
Atribut | Tipe MLIR | Keterangan |
---|---|---|
dilation_h_factor | ::mlir::IntegerAttr | Atribut bilangan bulat tanpa tanda 32-bit |
dilation_w_factor | ::mlir::IntegerAttr | Atribut bilangan bulat tanpa tanda 32-bit |
fused_activation_function | ::mlir::StringAttr | atribut string yang nilainya NONE, atau RELU, atau RELU_N1_TO_1, atau RELU6, atau TANH, atau SIGN_BIT |
padding | ::mlir::StringAttr | atribut string yang nilainya SAMA, atau VALID |
stride_h | ::mlir::IntegerAttr | Atribut bilangan bulat tanpa tanda 32-bit |
stride_w | ::mlir::IntegerAttr | Atribut bilangan bulat tanpa tanda 32-bit |
depth_multiplier | ::mlir::IntegerAttr | Atribut bilangan bulat tanpa tanda 32-bit |
Operan:
Operan | Keterangan |
---|---|
input | tensor nilai tipe float atau QI8 32-bit atau tipe QUI8 atau tipe QI16 |
filter | tensor nilai tipe float atau QI4 32-bit atau tipe QI8 atau tipe QUI8 |
bias | tensor nilai tipe apa pun atau tipe apa pun |
Hasil:
Hasil | Keterangan |
---|---|
output | tensor nilai tipe float atau QI8 32-bit atau tipe QUI8 atau tipe QI16 |
tfl.dequantize
(TFL::DequantizeOp)
Dekuantisasi operator
Mengonversi array bilangan bulat terkuantisasi menjadi floating-point sesuai dengan parameter kuantisasi.
Antarmuka: NoMemoryEffect (MemoryEffectOpInterface)
, TflRuntimeVerifyOpInterface
Efek: MemoryEffects::Effect{}
Operan:
Operan | Keterangan |
---|---|
input | tensor tipe QI4 atau tipe QI8 atau tipe QUI8 atau tipe QI16 atau nilai float 16-bit |
Hasil:
Hasil | Keterangan |
---|---|
output | tensor nilai float 32-bit |
tfl.dilate
(TFL::DilatOp)
Operator pelebaran
Memperluas tensor dengan menambahkan elemen baru di antara elemen yang sudah ada.
Ciri-ciri: AlwaysSpeculatableImplTrait
Antarmuka: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
, TflRuntimeVerifyOpInterface
Efek: MemoryEffects::Effect{}
Operan:
Operan | Keterangan |
---|---|
input | tensor bilangan bulat tak bertanda 8-bit atau bilangan bulat tak bertanda 16-bit atau bilangan bulat tak bertanda 32-bit atau bilangan bulat tak bertanda 64-bit atau bilangan bulat tak bertanda 8-bit atau bilangan bulat tak bertanda 16-bit atau bilangan bulat tak bertanda 32-bit atau bilangan bulat tak bertanda 64-bit atau bilangan bulat tak bertanda 64-bit atau Nilai float 32-bit atau nilai float 64-bit |
dilations | tensor nilai integer tanpa tanda 32-bit |
padding_value | Tensor 0D dari nilai jenis apa pun |
Hasil:
Hasil | Keterangan |
---|---|
output | tensor bilangan bulat tak bertanda 8-bit atau bilangan bulat tak bertanda 16-bit atau bilangan bulat tak bertanda 32-bit atau bilangan bulat tak bertanda 64-bit atau bilangan bulat tak bertanda 8-bit atau bilangan bulat tak bertanda 16-bit atau bilangan bulat tak bertanda 32-bit atau bilangan bulat tak bertanda 64-bit atau bilangan bulat tak bertanda 64-bit atau Nilai float 32-bit atau nilai float 64-bit |
tfl.div
(TFL::DivOp)
Operator divisi
Operasi pembagian berdasarkan elemen.
Sifat: ::mlir::OpTrait::TFLRuntimeOpTrait
, AlwaysSpeculatableImplTrait
, ResultsBroadcastableShape
Antarmuka: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
, TflArithmeticCountOpInterface
, TflRuntimeVerifyOpInterface
Efek: MemoryEffects::Effect{}
Atribut:
Atribut | Tipe MLIR | Keterangan |
---|---|---|
fused_activation_function | ::mlir::StringAttr | atribut string yang nilainya NONE, atau RELU, atau RELU_N1_TO_1, atau RELU6, atau TANH, atau SIGN_BIT |
Operan:
Operan | Keterangan |
---|---|
lhs | tensor nilai tipe float 32-bit atau bilangan bulat tanpa tanda 32-bit atau QUI8 |
rhs | tensor nilai tipe float 32-bit atau bilangan bulat tanpa tanda 32-bit atau QUI8 |
Hasil:
Hasil | Keterangan |
---|---|
output | tensor nilai tipe float 32-bit atau bilangan bulat tanpa tanda 32-bit atau QUI8 |
tfl.dynamic_update_slice
(TFL::DynamicUpdateSliceOp)
Irisan Pembaruan Dinamis.
Operasi DynamicUpdateSlice yang memiliki semantik yang sama dengan XLA DynamicUpdateSlice. Menghasilkan hasil yang merupakan nilai operan larik masukan, dengan pembaruan irisan ditimpa di start_indices.
Lihat https://www.tensorflow.org/xla/operation_semantics#dynamicupdateslice
Ciri-ciri: AlwaysSpeculatableImplTrait
Antarmuka: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
, TflRuntimeVerifyOpInterface
Efek: MemoryEffects::Effect{}
Operan:
Operan | Keterangan |
---|---|
operand | Tensor bilangan bulat 1-bit bitless atau integer 8-bit atau integer tertandai atau bilangan bulat 32-bit atau 64-bit integer suthless atau float 32-bit atau nilai apung 16-bit 16-bit |
update | Tensor bilangan bulat 1-bit bitless atau integer 8-bit atau integer tertandai atau bilangan bulat 32-bit atau 64-bit integer suthless atau float 32-bit atau nilai apung 16-bit 16-bit |
start_indices | Tensor nilai integer 32/64-bit tanda tangan |
Hasil:
Hasil | Keterangan |
---|---|
output | Tensor bilangan bulat 1-bit bitless atau integer 8-bit atau integer tertandai atau bilangan bulat 32-bit atau 64-bit integer suthless atau float 32-bit atau nilai apung 16-bit 16-bit |
tfl.elu
(tfl :: eluop)
Operator Unit Linear Eksponensial
Menghitung linear eksponensial F (x) -> exp (x) -1 untuk x <0, x untuk x> = 0. Elemen -bijaksana.
Ciri -ciri: AlwaysSpeculatableImplTrait
, SameOperandsAndResultShape
Antarmuka: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
, TflRuntimeVerifyOpInterface
Efek: MemoryEffects::Effect{}
Operan:
Operan | Keterangan |
---|---|
x | Tensor dari 32-bit float atau 8-bit nilai integer tanpa tanda |
Hasil:
Hasil | Keterangan |
---|---|
y | Tensor dari 32-bit float atau 8-bit nilai integer tanpa tanda |
tfl.embedding_lookup
(tfl :: embeddinglookupop)
Operator pencarian yang menanamkan
Mencari ID dalam daftar tensor yang menanamkan.
Ciri -ciri: AlwaysSpeculatableImplTrait
, QuantizableResult
Antarmuka: AffineQuantizedOpInterface
, ConditionallySpeculatable
, DynamicRangeQuantizedOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
, TflRuntimeVerifyOpInterface
Efek: MemoryEffects::Effect{}
Operan:
Operan | Keterangan |
---|---|
lookup | Tensor Nilai Integer Tanda Tanda Tanda Tanda |
value | Tensor float 32-bit atau integer tanpa tanda 8-bit atau 8-bit unsigned integer atau qi8 tipe atau nilai tipe qi8 atau qi4 tipe |
Hasil:
Hasil | Keterangan |
---|---|
output | tensor float 32-bit atau 8-bit integer tanpa tanda atau nilai integer unsigned 8-bit |
tfl.equal
(tfl :: equalop)
Operator yang sama
Mengembalikan elemen kebenaran x == y elemen bijaksana
Ciri -ciri: ::mlir::OpTrait::TFLRuntimeOpTrait
ResultsBroadcastableShape
AlwaysSpeculatableImplTrait
, Commutative
, QuantizableResult
,
Antarmuka: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
, TflRuntimeVerifyOpInterface
Efek: MemoryEffects::Effect{}
Operan:
Operan | Keterangan |
---|---|
x | tensor bilangan bulat 1-bit bitless atau float 32-bit atau 16-bit integer sutra atau 32-bit integer sutra atau 64-bit integer atau tipe qi8 atau tipe qii8 atau 8-bit unsigned integer atau nilai tipe string tflite string tflite tflite |
y | tensor bilangan bulat 1-bit bitless atau float 32-bit atau 16-bit integer sutra atau 32-bit integer sutra atau 64-bit integer atau tipe qi8 atau tipe qii8 atau 8-bit unsigned integer atau nilai tipe string tflite string tflite tflite |
Hasil:
Hasil | Keterangan |
---|---|
output | Tensor nilai integer 1-bit tanpa tanda |
tfl.exp
(tfl :: expop)
Operator eksponensial alami
Melakukan operasi eksponensial alami yang bijaksana pada input.
Ciri -ciri: AlwaysSpeculatableImplTrait
, QuantizableResult
Antarmuka: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
, TflRuntimeVerifyOpInterface
Efek: MemoryEffects::Effect{}
Operan:
Operan | Keterangan |
---|---|
x | Tensor 32-bit float atau qi8 tipe atau nilai tipe Qi16 |
Hasil:
Hasil | Keterangan |
---|---|
y | Tensor 32-bit float atau qi8 tipe atau nilai tipe Qi16 |
tfl.expand_dims
(tfl :: expanddimsop)
Memasukkan dimensi 1 ke dalam bentuk tensor.
Diberi input
tensor, operasi ini memasukkan dimensi 1 pada axis
indeks dimensi bentuk input
. axis
indeks dimensi dimulai pada nol; Jika Anda menentukan angka negatif untuk axis
itu dihitung mundur dari ujungnya.
Operasi ini berguna jika Anda ingin menambahkan dimensi batch ke satu elemen. Misalnya, jika Anda memiliki satu gambar bentuk [height, width, channels]
, Anda dapat menjadikannya batch 1 gambar dengan expand_dims(image, 0)
, yang akan membuat bentuk [1, height, width, channels]
.
Contoh lainnya:
# 't' is a tensor of shape [2]
shape(expand_dims(t, 0)) ==> [1, 2]
shape(expand_dims(t, 1)) ==> [2, 1]
shape(expand_dims(t, -1)) ==> [2, 1]
# 't2' is a tensor of shape [2, 3, 5]
shape(expand_dims(t2, 0)) ==> [1, 2, 3, 5]
shape(expand_dims(t2, 2)) ==> [2, 3, 1, 5]
shape(expand_dims(t2, 3)) ==> [2, 3, 5, 1]
Operasi ini mensyaratkan itu:
-1-input.dims() <= dim <= input.dims()
Operasi ini terkait dengan squeeze()
, yang menghilangkan dimensi ukuran 1.
Ciri -ciri: AlwaysSpeculatableImplTrait
, QuantizableResult
Antarmuka: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
, SameOperandsAndResultsScale
, TflRuntimeVerifyOpInterface
Efek: MemoryEffects::Effect{}
Operan:
Operan | Keterangan |
---|---|
input | tensor nilai jenis apa pun |
dim | Tensor nilai integer 32/64-bit tanda tangan |
Hasil:
Hasil | Keterangan |
---|---|
output | tensor nilai jenis apa pun |
tfl.external_const
(tfl :: externalconstop)
Op Konstitusi Eksternal.
Eksternal const op memegang buffer_index
yang menunjuk ke konstan di flatbuffer.
Ciri -ciri: AlwaysSpeculatableImplTrait
, QuantizableResult
Antarmuka: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
, TflRuntimeVerifyOpInterface
Efek: MemoryEffects::Effect{}
Atribut:
Atribut | Jenis MLIR | Keterangan |
---|---|---|
buffer_index | :: mlir :: integerattr | Atribut integer 32-bit |
Hasil:
Hasil | Keterangan |
---|---|
output | tensor nilai jenis apa pun |
tfl.fake_quant
(tfl :: fakequantop)
Operator palsu
Palsu-quatize tensor 'input' tipe float melalui float skalar min dan max ke 'output' tensor dengan bentuk yang sama dengan input.
Ciri -ciri: AlwaysSpeculatableImplTrait
, QuantizableResult
Antarmuka: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
, TflRuntimeVerifyOpInterface
Efek: MemoryEffects::Effect{}
Atribut:
Atribut | Jenis MLIR | Keterangan |
---|---|---|
min | :: mlir :: floatattr | Atribut float 32-bit |
max | :: mlir :: floatattr | Atribut float 32-bit |
num_bits | :: mlir :: integerattr | Atribut integer 32-bit yang ditandakan yang nilai minimumnya adalah 2 yang nilai maksimumnya adalah 16 |
narrow_range | :: mlir :: boolattr | atribut bool yang nilainya salah |
Operan:
Operan | Keterangan |
---|---|
input | Tensor nilai float 32-bit |
Hasil:
Hasil | Keterangan |
---|---|
output | Tensor nilai float 32-bit |
tfl.fill
(tfl :: fillop)
Isi tensor dengan nilai yang diberikan.
Isi tensor dengan nilai yang diberikan.
Ciri -ciri: AlwaysSpeculatableImplTrait
, QuantizableResult
Antarmuka: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
, SameOperandsAndResultsScale
, TflRuntimeVerifyOpInterface
Efek: MemoryEffects::Effect{}
Operan:
Operan | Keterangan |
---|---|
dims | Tensor nilai integer 32/64-bit tanda tangan |
input | tensor float 32-bit atau 16-bit float atau 32-bit integer suthless atau 64-bit integer silsless atau 1-bit integer atau qi8 tipe atau qi16 tipe atau nilai tipe string tflite tflite tflite |
Hasil:
Hasil | Keterangan |
---|---|
result | tensor float 32-bit atau 16-bit float atau 32-bit integer suthless atau 64-bit integer silsless atau 1-bit integer atau qi8 tipe atau qi16 tipe atau nilai tipe string tflite tflite tflite |
tfl.floor
(tfl :: floatop)
Operator lantai
Mengembalikan nilai lantai input yang bijaksana.
Ciri -ciri: AlwaysSpeculatableImplTrait
, InferTensorType
, TF::SameOperandsAndResultTypeResolveRef
Antarmuka: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
, TflRuntimeVerifyOpInterface
Efek: MemoryEffects::Effect{}
Operan:
Operan | Keterangan |
---|---|
x | Tensor nilai float 32-bit |
Hasil:
Hasil | Keterangan |
---|---|
y | Tensor nilai float 32-bit |
tfl.floor_div
(tfl :: floordivop)
Operator Div Lantai
Operasi Div Lantai-Wise-Wise.
Ciri -ciri: ::mlir::OpTrait::TFLRuntimeOpTrait
ResultsBroadcastableShape
AlwaysSpeculatableImplTrait
Antarmuka: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
, TflRuntimeVerifyOpInterface
Efek: MemoryEffects::Effect{}
Operan:
Operan | Keterangan |
---|---|
lhs | tensor float 32-bit atau 8-bit integer tanpa tanda atau 16-bit integer tanda atau 32-bit nilai integer tanda tangan |
rhs | tensor float 32-bit atau 8-bit integer tanpa tanda atau 16-bit integer tanda atau 32-bit nilai integer tanda tangan |
Hasil:
Hasil | Keterangan |
---|---|
output | tensor float 32-bit atau 8-bit integer tanpa tanda atau 16-bit integer tanda atau 32-bit nilai integer tanda tangan |
tfl.floor_mod
(tfl :: floorModop)
Pengingat Divisi
Operasi Pengingat Divisi Elemen.
Ciri -ciri: ::mlir::OpTrait::TFLRuntimeOpTrait
ResultsBroadcastableShape
AlwaysSpeculatableImplTrait
Antarmuka: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
, TflRuntimeVerifyOpInterface
Efek: MemoryEffects::Effect{}
Operan:
Operan | Keterangan |
---|---|
lhs | tensor integer 8-bit integer atau 16-bit integer atau integer tertandai atau 32-bit integer atau 64-bit integer atau nilai float 32-bit float 32-bit |
rhs | tensor integer 8-bit integer atau 16-bit integer atau integer tertandai atau 32-bit integer atau 64-bit integer atau nilai float 32-bit float 32-bit |
Hasil:
Hasil | Keterangan |
---|---|
output | tensor integer 8-bit integer atau 16-bit integer atau integer tertandai atau 32-bit integer atau 64-bit integer atau nilai float 32-bit float 32-bit |
tfl.fully_connected
(tfl :: fullConnectedop)
OP yang sepenuhnya terhubung
Ciri -ciri: AlwaysSpeculatableImplTrait
, QuantizableResult
, quant::AccumulatorUniformScale<2, 0, 1>
, quant::AffineOpCoefficient<0, 1>
Antarmuka: AffineQuantizedOpInterface
, ConditionallySpeculatable
, DynamicRangeQuantizedOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
, TFL_SparseOp
, TflArithmeticCountOpInterface
, TflRuntimeVerifyOpInterface
Efek: MemoryEffects::Effect{}
Atribut:
Atribut | Jenis MLIR | Keterangan |
---|---|---|
fused_activation_function | :: mlir :: stringattr | atribut string yang nilainya tidak ada, atau relu, atau relu_n1_to_1, atau relu6, atau tanh, atau Sign_bit |
weights_format | :: mlir :: stringattr | atribut string yang nilainya default, atau shuffled4x16int8 |
keep_num_dims | :: mlir :: boolattr | atribut bool |
asymmetric_quantize_inputs | :: mlir :: boolattr | atribut bool |
Operan:
Operan | Keterangan |
---|---|
input | tensor 32-bit float atau qi8 type atau qui8 type atau qi16 type atau qui16 tipe nilai |
filter | tensor 32-bit float atau qi4 type atau qi8 type atau qui8 type atau qi16 tipe nilai |
bias | tensor nilai jenis apa pun atau tidak sama sekali |
Hasil:
Hasil | Keterangan |
---|---|
output | Variadik tensor dari nilai jenis apa pun |
tfl.gather
(tfl :: gatherop)
Kumpulkan operator
Kumpulkan irisan dari axis
poros params
sesuai dengan indices
.
Ciri -ciri: AlwaysSpeculatableImplTrait
, QuantizableResult
Antarmuka: ConditionallySpeculatable
, DynamicRangeQuantizedOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
, SameOperandsAndResultsScale
, TflRuntimeVerifyOpInterface
Efek: MemoryEffects::Effect{}
Atribut:
Atribut | Jenis MLIR | Keterangan |
---|---|---|
axis | :: mlir :: integerattr | Atribut integer 32-bit |
batch_dims | :: mlir :: integerattr | Atribut integer 32-bit |
Operan:
Operan | Keterangan |
---|---|
params | tensor float 32-bit atau 1-bit integer tanpa tanda atau 4-bit integer tanpa tanda atau integer 8-bit integer atau integer tanda-bit atau integer tanda-tanda atau tipe string tertandai atau 84-bit atau 84-bit atau 84-bit atau 84-bit atau 84-bit atau 84-bit atau 84-bit STIGLESS STIGLE atau TFLITE STRING atau 8-bit Jenis Integer atau Qi8 Tipe atau Jenis QI8 atau QI16 Jenis Nilai |
indices | Tensor 16-bit Integer Tanda Tanda Tanda Tanda Tanda Tanda Tanda Tanda Tanda Tanda Tanda Sandat atau 64-bit Nilai Integer Tanda Tanda Tanda |
Hasil:
Hasil | Keterangan |
---|---|
output | tensor float 32-bit atau 1-bit integer tanpa tanda atau 4-bit integer tanpa tanda atau integer 8-bit integer atau integer tanda-bit atau integer tanda-tanda atau tipe string tertandai atau 84-bit atau 84-bit atau 84-bit atau 84-bit atau 84-bit atau 84-bit atau 84-bit STIGLESS STIGLE atau TFLITE STRING atau 8-bit Jenis Integer atau Qi8 Tipe atau Jenis QI8 atau QI16 Jenis Nilai |
tfl.gather_nd
(tfl :: callingndop)
_Gather ND Operator
Kumpulkan irisan dari params
menjadi tensor dengan bentuk yang ditentukan oleh indices
.
Ciri -ciri: AlwaysSpeculatableImplTrait
, QuantizableResult
Antarmuka: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
, SameOperandsAndResultsScale
, TflRuntimeVerifyOpInterface
Efek: MemoryEffects::Effect{}
Operan:
Operan | Keterangan |
---|---|
params | tensor float 32-bit atau 1-bit integer tanpa tanda atau 8-bit integer tanpa tanda atau 16-bit integer sutra atau integer 64-bit integer atau 32-bit integer atau nilai tipe string tanpa tanda atau 8-bit unsigned atau qi8 atau qi8 atau tflite string tipe string |
indices | Tensor 16-bit Integer Tanda Tanda Tanda Tanda Tanda Tanda Tanda Tanda Tanda Tanda Tanda Sandat atau 64-bit Nilai Integer Tanda Tanda Tanda |
Hasil:
Hasil | Keterangan |
---|---|
output | tensor float 32-bit atau 1-bit integer tanpa tanda atau 8-bit integer tanpa tanda atau 16-bit integer sutra atau integer 64-bit integer atau 32-bit integer atau nilai tipe string tanpa tanda atau 8-bit unsigned atau qi8 atau qi8 atau tflite string tipe string |
tfl.gelu
(tfl :: geluop)
Fungsi Aktivasi Gelu.
Menghitung elemen fungsi aktivasi gelu-bijaksana.
Ciri -ciri: AlwaysSpeculatableImplTrait
, QuantizableResult
, SameOperandsAndResultShape
Antarmuka: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
, TflRuntimeVerifyOpInterface
Efek: MemoryEffects::Effect{}
Atribut:
Atribut | Jenis MLIR | Keterangan |
---|---|---|
approximate | :: mlir :: boolattr | atribut bool |
Operan:
Operan | Keterangan |
---|---|
input | Tensor 32-bit float atau qi8 tipe atau nilai tipe QUI8 |
Hasil:
Hasil | Keterangan |
---|---|
output | Tensor 32-bit float atau qi8 tipe atau nilai tipe QUI8 |
tfl.greater
(tfl :: greatop)
Operator yang lebih besar
Operasi yang lebih besar dari elemen.
Ciri -ciri: ::mlir::OpTrait::TFLRuntimeOpTrait
AlwaysSpeculatableImplTrait
ResultsBroadcastableShape
QuantizableResult
Antarmuka: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
, TflRuntimeVerifyOpInterface
Efek: MemoryEffects::Effect{}
Operan:
Operan | Keterangan |
---|---|
lhs | Tensor 32-bit float atau 32-bit integer tanpa tanda atau 64-bit integer tanpa tanda atau tipe qii8 atau tipe qi8 atau nilai tipe quint8 tflite |
rhs | Tensor 32-bit float atau 32-bit integer tanpa tanda atau 64-bit integer tanpa tanda atau tipe qii8 atau tipe qi8 atau nilai tipe quint8 tflite |
Hasil:
Hasil | Keterangan |
---|---|
output | Tensor nilai integer 1-bit tanpa tanda |
tfl.greater_equal
(tfl :: greaterequalop)
_ Operator yang sama
Operasi elemen-bijaksana Greater_Equal.
Ciri -ciri: ::mlir::OpTrait::TFLRuntimeOpTrait
AlwaysSpeculatableImplTrait
ResultsBroadcastableShape
QuantizableResult
Antarmuka: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
, TflRuntimeVerifyOpInterface
Efek: MemoryEffects::Effect{}
Operan:
Operan | Keterangan |
---|---|
lhs | tensor float 32-bit atau integer standless 16-bit atau 32-bit integer atau 64-bit integer atau nilai tipe qii8 atau qi8 tipe qi8 |
rhs | tensor float 32-bit atau integer standless 16-bit atau 32-bit integer atau 64-bit integer atau nilai tipe qii8 atau qi8 tipe qi8 |
Hasil:
Hasil | Keterangan |
---|---|
output | Tensor nilai integer 1-bit tanpa tanda |
tfl.hard_swish
(tfl :: hardswishop)
Fungsi aktivasi hardswish.
Menghitung fungsi aktivasi keras-Swish f (x)-> (x * relu6 (x+3))/6 elemen-bijaksana.
Ciri -ciri: AlwaysSpeculatableImplTrait
, QuantizableResult
, SameOperandsAndResultShape
Antarmuka: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
, TflRuntimeVerifyOpInterface
Efek: MemoryEffects::Effect{}
Operan:
Operan | Keterangan |
---|---|
input | Tensor nilai 32-bit float atau qui8 atau qi8 tipe |
Hasil:
Hasil | Keterangan |
---|---|
output | Tensor nilai 32-bit float atau qui8 atau qi8 tipe |
tfl.hashtable
(tfl :: hashtableop)
Membuat tabel hash yang tidak diinisialisasi.
OP ini membuat tabel hash, menentukan jenis kunci dan nilainya. Sebelum menggunakan tabel, Anda harus menginisialisasi. Setelah inisialisasi tabel akan tidak berubah.
Antarmuka: TflRuntimeVerifyOpInterface
Atribut:
Atribut | Jenis MLIR | Keterangan |
---|---|---|
table_id | :: mlir :: integerattr | Atribut integer 32-bit |
key_dtype | :: mlir :: typeattr | atribut jenis apa pun |
value_dtype | :: mlir :: typeattr | atribut jenis apa pun |
Hasil:
Hasil | Keterangan |
---|---|
out | Tensor nilai sumber daya |
tfl.hashtable_find
(tfl :: hashtablefindop)
Mencari kunci dalam tabel, mengeluarkan nilai yang sesuai.
keys
tensor harus dari jenis yang sama dengan kunci tabel. values
output adalah jenis nilai tabel.
Scalar default_value
adalah output nilai untuk kunci yang tidak ada dalam tabel. Itu juga harus memiliki tipe yang sama dengan nilai tabel.
Antarmuka: TflRuntimeVerifyOpInterface
Operan:
Operan | Keterangan |
---|---|
hash_table | Tensor nilai sumber daya |
keys | tensor 32-bit integer tanpa tanda atau tipe string tflite atau nilai integer 64-bit tanda tangan |
default_value | Tensor float 32-bit atau 32-bit integer tanpa tanda atau tipe string TFLITE atau nilai integer tertandat 64-bit |
Hasil:
Hasil | Keterangan |
---|---|
out | Tensor float 32-bit atau 32-bit integer tanpa tanda atau tipe string TFLITE atau nilai integer tertandat 64-bit |
tfl.hashtable_import
(tfl :: hashtableimportop)
Menggantikan isi tabel dengan kunci dan nilai yang ditentukan.
keys
tensor harus memiliki jenis yang sama dengan kunci tabel. values
tensor harus dari jenis nilai tabel.
Antarmuka: TflRuntimeVerifyOpInterface
Operan:
Operan | Keterangan |
---|---|
hash_table | Tensor nilai sumber daya |
keys | tensor 32-bit integer tanpa tanda atau tipe string tflite atau nilai integer 64-bit tanda tangan |
values | Tensor float 32-bit atau 32-bit integer tanpa tanda atau tipe string TFLITE atau nilai integer tertandat 64-bit |
tfl.hashtable_size
(tfl :: hashtablessizeop)
Menghitung jumlah elemen dalam tabel yang diberikan.
Antarmuka: TflRuntimeVerifyOpInterface
Operan:
Operan | Keterangan |
---|---|
hash_table | Tensor nilai sumber daya |
Hasil:
Hasil | Keterangan |
---|---|
out | Tensor dari nilai integer 64-bit yang tidak bertanda |
tfl.if
(tfl :: ifop)
Operasi If-Then-Else
Operasi tfl.if
mewakili konstruk jika-kemudian-else untuk mengeksekusi secara kondisional dua wilayah kode. Operan ke operasi IF adalah nilai boolean. Misalnya:
tfl.if %b {
...
} else {
...
}
tfl.if
juga dapat mengembalikan hasil yang didefinisikan di daerahnya. Nilai -nilai yang ditentukan ditentukan oleh jalur eksekusi yang diambil.
Contoh:
%x, %y = tfl.if %b -> (tensor<f32>, tensor<f32>) {
%x_true = ...
%y_true = ...
tfl.yield %x_true, %y_true : tensor<f32>, tensor<f32>
} else {
%x_false = ...
%y_false = ...
tfl.yield %x_false, %y_false : tensor<f32>, tensor<f32>
}
tfl.if
daerah selalu diakhiri dengan "tfl.yield". Jika "tfl.if" tidak mendefinisikan nilai, "tfl.yield" dapat ditinggalkan, dan akan dimasukkan secara implisit. Kalau tidak, itu harus eksplisit. Juga, jika "tfl.jika" mendefinisikan satu atau lebih nilai, blok 'lain' tidak dapat dihilangkan.
Contoh:
tfl.if %b {
...
}
Ciri -ciri: NoRegionArguments
, RecursiveMemoryEffects
, SingleBlockImplicitTerminator<YieldOp>
, SingleBlock
Antarmuka: RegionBranchOpInterface
, TflRuntimeVerifyOpInterface
Operan:
Operan | Keterangan |
---|---|
cond | Tensor nilai integer 1-bit tanpa tanda |
Hasil:
Hasil | Keterangan |
---|---|
results | Variadik tensor dari nilai jenis apa pun |
tfl.imag
(tfl :: imagop)
Mengembalikan bagian imajiner dari bilangan kompleks.
Dengan input
tensor bilangan kompleks, operasi ini mengembalikan tensor tipe float
yang merupakan bagian imajiner dari setiap elemen dalam input
. Semua elemen dalam input
harus berupa bilangan formulir yang kompleks \(a + bj\), di mana A adalah bagian nyata dan B adalah bagian imajiner yang dikembalikan oleh operasi ini.
Ciri -ciri: AlwaysSpeculatableImplTrait
, SameOperandsAndResultShape
Antarmuka: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
, TflRuntimeVerifyOpInterface
Efek: MemoryEffects::Effect{}
Operan:
Operan | Keterangan |
---|---|
input | tensor tipe kompleks dengan elemen float 32-bit atau tipe kompleks dengan nilai elemen float 64-bit |
Hasil:
Hasil | Keterangan |
---|---|
output | Tensor nilai pelampung 32-bit atau 64-bit float |
tfl.l2_normalization
(tfl :: l2normalizationop)
L2 menormalkan operator
L2normalisasi op
Ciri -ciri: AlwaysSpeculatableImplTrait
, QuantizableResult
Antarmuka: ConditionallySpeculatable
, FixedOutputRangeInterface
, NoMemoryEffect (MemoryEffectOpInterface)
, TflArithmeticCountOpInterface
, TflRuntimeVerifyOpInterface
Efek: MemoryEffects::Effect{}
Atribut:
Atribut | Jenis MLIR | Keterangan |
---|---|---|
fused_activation_function | :: mlir :: stringattr | atribut string yang nilainya tidak ada, atau relu, atau relu_n1_to_1, atau relu6, atau tanh, atau Sign_bit |
Operan:
Operan | Keterangan |
---|---|
input | tensor 32-bit float atau tipe qii8 atau qi8 tipe atau tipe qui16 atau qi16 tipe atau 8-bit nilai integer tanda tangan |
Hasil:
Hasil | Keterangan |
---|---|
output | tensor 32-bit float atau tipe qii8 atau qi8 tipe atau tipe qui16 atau qi16 tipe atau 8-bit nilai integer tanda tangan |
tfl.leaky_relu
(tfl :: leakyreluop)
Operator Relu Bocor
Operator Relu Bocor Elemen -bijaksana X -> X> = 0? x: (alpha * x)
Ciri -ciri: AlwaysSpeculatableImplTrait
, QuantizableResult
, SameOperandsAndResultShape
Antarmuka: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
, TflRuntimeVerifyOpInterface
Efek: MemoryEffects::Effect{}
Atribut:
Atribut | Jenis MLIR | Keterangan |
---|---|---|
alpha | :: mlir :: floatattr | Atribut float 32-bit |
Operan:
Operan | Keterangan |
---|---|
input | tensor 32-bit float atau qui8 type atau qi8 type atau tflite quint8 type atau qi16 tipe nilai |
Hasil:
Hasil | Keterangan |
---|---|
output | tensor 32-bit float atau qui8 type atau qi8 type atau tflite quint8 type atau qi16 tipe nilai |
tfl.less
(tfl :: lessop)
Lebih sedikit operator
Elemen-bijaksana kurang operasi.
Ciri -ciri: ::mlir::OpTrait::TFLRuntimeOpTrait
AlwaysSpeculatableImplTrait
ResultsBroadcastableShape
QuantizableResult
Antarmuka: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
, TflRuntimeVerifyOpInterface
Efek: MemoryEffects::Effect{}
Operan:
Operan | Keterangan |
---|---|
lhs | Tensor 32-bit float atau 16-bit integer tanpa tanda atau 32-bit integer tanpa tanda atau 64-bit integer sutra atau tipe qui8 atau tipe qi8 atau nilai tipe quint8 tflite |
rhs | Tensor 32-bit float atau 16-bit integer tanpa tanda atau 32-bit integer tanpa tanda atau 64-bit integer sutra atau tipe qui8 atau tipe qi8 atau nilai tipe quint8 tflite |
Hasil:
Hasil | Keterangan |
---|---|
output | Tensor nilai integer 1-bit tanpa tanda |
tfl.less_equal
(tfl :: lessequalop)
_Less operator yang sama
Operasi Less_Equal elemen-bijaksana.
Ciri -ciri: ::mlir::OpTrait::TFLRuntimeOpTrait
AlwaysSpeculatableImplTrait
ResultsBroadcastableShape
QuantizableResult
Antarmuka: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
, TflRuntimeVerifyOpInterface
Efek: MemoryEffects::Effect{}
Operan:
Operan | Keterangan |
---|---|
lhs | Tensor float 32-bit atau integer tanpa tanda 32-bit atau 64-bit integer atau qi8 tipe atau nilai tipe QUI8 |
rhs | Tensor float 32-bit atau integer tanpa tanda 32-bit atau 64-bit integer atau qi8 tipe atau nilai tipe QUI8 |
Hasil:
Hasil | Keterangan |
---|---|
output | Tensor nilai integer 1-bit tanpa tanda |
tfl.local_response_normalization
(tfl :: localresponsenormalizationop)
Normalisasi respons lokal.
Tensor input
4-D diperlakukan sebagai array 3-D vektor 1-D (sepanjang dimensi terakhir), dan setiap vektor dinormalisasi secara independen. Dalam vektor yang diberikan, setiap komponen dibagi dengan jumlah input yang tertimbang, kuadrat dalam depth_radius
. Secara terperinci,
sqr_sum[a, b, c, d] =
sum(input[a, b, c, d - depth_radius : d + depth_radius + 1] ** 2)
output = input / (bias + alpha * sqr_sum) ** beta
Untuk detailnya, lihat Krizhevsky et al., Klasifikasi Imagenet dengan jaringan saraf konvolusional yang mendalam (NIPS 2012) .
Ciri -ciri: AlwaysSpeculatableImplTrait
, InferTensorType
, TF::SameOperandsAndResultTypeResolveRef
Antarmuka: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
, TflRuntimeVerifyOpInterface
Efek: MemoryEffects::Effect{}
Atribut:
Atribut | Jenis MLIR | Keterangan |
---|---|---|
radius | :: mlir :: integerattr | Atribut integer 32-bit |
bias | :: mlir :: floatattr | Atribut float 32-bit |
alpha | :: mlir :: floatattr | Atribut float 32-bit |
beta | :: mlir :: floatattr | Atribut float 32-bit |
Operan:
Operan | Keterangan |
---|---|
input | Tensor nilai float 32-bit |
Hasil:
Hasil | Keterangan |
---|---|
output | Tensor nilai float 32-bit |
tfl.log
(tfl :: logop)
Operator logaritma alami
Melakukan operasi logaritma alami yang bijaksana pada input.
Ciri -ciri: AlwaysSpeculatableImplTrait
, QuantizableResult
Antarmuka: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
, TflRuntimeVerifyOpInterface
Efek: MemoryEffects::Effect{}
Operan:
Operan | Keterangan |
---|---|
x | Tensor nilai tipe float 32-bit atau qi8 |
Hasil:
Hasil | Keterangan |
---|---|
y | Tensor nilai tipe float 32-bit atau qi8 |
tfl.log_softmax
(tfl :: logsoftmaxop)
Operator Log Softmax
Menghitung aktivasi log softmax log-wise dengan rumus berikut
Input - Log (redike_sum (exp (input), DIM))
Ciri -ciri: AlwaysSpeculatableImplTrait
, QuantizableResult
, SameOperandsAndResultShape
Antarmuka: ConditionallySpeculatable
, FixedOutputRangeInterface
, NoMemoryEffect (MemoryEffectOpInterface)
, TflArithmeticCountOpInterface
, TflRuntimeVerifyOpInterface
Efek: MemoryEffects::Effect{}
Operan:
Operan | Keterangan |
---|---|
input | tensor 32-bit float atau qui8 type atau qi8 type atau tflite quint8 value |
Hasil:
Hasil | Keterangan |
---|---|
output | tensor 32-bit float atau qui8 type atau qi8 type atau tflite quint8 value |
tfl.logical_and
(tfl :: LogicalAndop)
Logis dan operator
Logis dan Operasi Elemen-bijaksana.
Ciri -ciri: AlwaysSpeculatableImplTrait
, ResultsBroadcastableShape
Antarmuka: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
, TflRuntimeVerifyOpInterface
Efek: MemoryEffects::Effect{}
Operan:
Operan | Keterangan |
---|---|
lhs | Tensor nilai integer 1-bit tanpa tanda |
rhs | Tensor nilai integer 1-bit tanpa tanda |
Hasil:
Hasil | Keterangan |
---|---|
output | Tensor nilai integer 1-bit tanpa tanda |
tfl.logical_not
(tfl :: LogicalNotop)
Logis bukan operator
Elemen-bijaksana logis bukan operasi.
Ciri -ciri: AlwaysSpeculatableImplTrait
, SameOperandsAndResultShape
Antarmuka: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
, TflRuntimeVerifyOpInterface
Efek: MemoryEffects::Effect{}
Operan:
Operan | Keterangan |
---|---|
lhs | Tensor nilai integer 1-bit tanpa tanda |
Hasil:
Hasil | Keterangan |
---|---|
output | Tensor nilai integer 1-bit tanpa tanda |
tfl.logical_or
(TFL :: Logicalorop)
Logis atau operator
Logis atau operasi elemen.
Ciri -ciri: AlwaysSpeculatableImplTrait
, ResultsBroadcastableShape
Antarmuka: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
, TflRuntimeVerifyOpInterface
Efek: MemoryEffects::Effect{}
Operan:
Operan | Keterangan |
---|---|
lhs | Tensor nilai integer 1-bit tanpa tanda |
rhs | Tensor nilai integer 1-bit tanpa tanda |
Hasil:
Hasil | Keterangan |
---|---|
output | Tensor nilai integer 1-bit tanpa tanda |
tfl.logistic
(tfl :: logisticop)
Operator logistik
Menghitung input elemen bijaksana
Ciri -ciri: AlwaysSpeculatableImplTrait
, QuantizableResult
, SameOperandsAndResultShape
Antarmuka: ConditionallySpeculatable
, FixedOutputRangeInterface
, NoMemoryEffect (MemoryEffectOpInterface)
, TflArithmeticCountOpInterface
, TflRuntimeVerifyOpInterface
Efek: MemoryEffects::Effect{}
Operan:
Operan | Keterangan |
---|---|
x | tensor 32-bit float atau qi8 type atau qui8 type atau qi16 type atau tflite quint8 values |
Hasil:
Hasil | Keterangan |
---|---|
y | tensor 32-bit float atau qi8 type atau qui8 type atau qi16 type atau tflite quint8 values |
tfl.lstm
(tfl :: lstmop)
Operator LSTM lengkap
Lapisan Jaringan Unit Berulang Lama (LSTM) Berulang. Implementasi non-peephole default didasarkan pada: http://deeplearning.cs.cmu.edu/pdfs/hochreiter97_lstm.pdf S. Hochreiter dan J. Schmidhuber. 'Memori jangka pendek yang panjang'. Komputasi Saraf, 9 (8): 1735-1780, 1997. Implementasi Peephole didasarkan pada: https://research.google.com/pubs/archive/43905.pdf Hasim Sak, Andrew Senior, dan Francoise Beaufays. 'Arsitektur jaringan saraf berulang memori jangka pendek untuk pemodelan akustik skala besar.' Interspeech, 2014. Kopling input dan lupa gerbang (CIFG) didasarkan pada: http://arxiv.org/pdf/1503.04069.pdf Greff et al. 'LSTM: ruang pencarian Odyssey' Normalisasi lapisan didasarkan pada: https://arxiv.org/pdf/1607.06450.pdf Ba et al. 'Normalisasi lapisan'
Ciri -ciri: QuantizableResult
Antarmuka: DynamicRangeQuantizedOpInterface
, TFL_StatefulOp
, TflRuntimeVerifyOpInterface
Atribut:
Atribut | Jenis MLIR | Keterangan |
---|---|---|
fused_activation_function | :: mlir :: stringattr | atribut string yang nilainya tidak ada, atau relu, atau relu_n1_to_1, atau relu6, atau tanh, atau Sign_bit |
cell_clip | :: mlir :: floatattr | Atribut float 32-bit yang nilainya non-negatif |
proj_clip | :: mlir :: floatattr | Atribut float 32-bit yang nilainya non-negatif |
kernel_type | :: mlir :: tfl :: lstmkerneltypeattr | lstm_kernel_type yang nilainya mlir :: tfl :: lstmkerneltype :: full |
asymmetric_quantize_inputs | :: mlir :: boolattr | atribut bool |
input_to_input_intermediate | :: mlir :: typeattr | atribut jenis apa pun |
input_to_forget_intermediate | :: mlir :: typeattr | atribut jenis apa pun |
input_to_cell_intermediate | :: mlir :: typeattr | atribut jenis apa pun |
input_to_output_intermediate | :: mlir :: typeattr | atribut jenis apa pun |
effective_hidden_scale_intermediate | :: mlir :: typeattr | atribut jenis apa pun |
Operan:
Operan | Keterangan |
---|---|
input | Tensor 32-bit float atau qi8 tipe atau nilai tipe Qi16 |
input_to_input_weights | tensor nilai jenis apa pun atau tidak sama sekali |
input_to_forget_weights | Tensor nilai tipe float 32-bit atau qi8 |
input_to_cell_weights | Tensor nilai tipe float 32-bit atau qi8 |
input_to_output_weights | Tensor nilai tipe float 32-bit atau qi8 |
recurrent_to_input_weights | tensor nilai jenis apa pun atau tidak sama sekali |
recurrent_to_forget_weights | Tensor nilai tipe float 32-bit atau qi8 |
recurrent_to_cell_weights | Tensor nilai tipe float 32-bit atau qi8 |
recurrent_to_output_weights | Tensor nilai tipe float 32-bit atau qi8 |
cell_to_input_weights | tensor nilai jenis apa pun atau tidak sama sekali |
cell_to_forget_weights | tensor nilai jenis apa pun atau tidak sama sekali |
cell_to_output_weights | tensor nilai jenis apa pun atau tidak sama sekali |
input_gate_bias | tensor nilai jenis apa pun atau tidak sama sekali |
forget_gate_bias | Tensor nilai tipe float 32-bit atau Qi32 |
cell_bias | Tensor nilai tipe float 32-bit atau Qi32 |
output_gate_bias | Tensor nilai tipe float 32-bit atau Qi32 |
projection_weights | tensor nilai jenis apa pun atau tidak sama sekali |
projection_bias | tensor nilai jenis apa pun atau tidak sama sekali |
input_activation_state | Tensor yang stateful |
input_cell_state | Tensor yang stateful |
input_layer_norm_coefficients | tensor nilai jenis apa pun atau tidak sama sekali |
forget_layer_norm_coefficients | tensor nilai jenis apa pun atau tidak sama sekali |
cell_layer_norm_coefficients | tensor nilai jenis apa pun atau tidak sama sekali |
output_layer_norm_coefficients | tensor nilai jenis apa pun atau tidak sama sekali |
Hasil:
Hasil | Keterangan |
---|---|
output | tensor nilai jenis apa pun |
tfl.matrix_diag
(tfl :: matrixdiagop)
Mengembalikan tensor dengan diagonal yang disediakan dan yang lainnya empuk dengan nol.
Diberi diagonal, mengembalikan tensor dengan diagonal dan yang lainnya empuk dengan nol. Asumsikan diagonal memiliki dimensi k [I, J, K, ..., N]
, maka outputnya adalah tensor peringkat k+1
dengan dimensi [I, J, K, ..., N, N]
di mana: output[i, j, k, ..., m, n] = 1{m=n} * diagonal[i, j, k, ..., n].
Ciri -ciri: AlwaysSpeculatableImplTrait
, QuantizableResult
Antarmuka: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
, TflRuntimeVerifyOpInterface
Efek: MemoryEffects::Effect{}
Operan:
Operan | Keterangan |
---|---|
diagonal | tensor float 32-bit atau 8-bit integer tanpa tanda atau 16-bit integer tanpa tanda atau 32-bit integer silsless atau integer 64-bit integer sutra atau integer 8-bit unsigned atau qui8 type atau qi8 tipe atau nilai tipe Quint8 tflite quint8 tflite quint8 |
Hasil:
Hasil | Keterangan |
---|---|
output | tensor float 32-bit atau 8-bit integer tanpa tanda atau 16-bit integer tanpa tanda atau 32-bit integer silsless atau integer 64-bit integer sutra atau integer 8-bit unsigned atau qui8 type atau qi8 tipe atau nilai tipe Quint8 tflite quint8 tflite quint8 |
tfl.matrix_set_diag
(tfl :: matrixsetDiagop)
Mengembalikan tensor matriks batch dengan nilai diagonal batched baru.
Diberi input
dan diagonal
, operasi ini mengembalikan tensor dengan bentuk dan nilai yang sama seperti input
, kecuali untuk diagonal utama dari matriks terdalam. Ini akan ditimpa oleh nilai -nilai di diagonal
.
Ciri -ciri: AlwaysSpeculatableImplTrait
, QuantizableResult
Antarmuka: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
, TflRuntimeVerifyOpInterface
Efek: MemoryEffects::Effect{}
Operan:
Operan | Keterangan |
---|---|
input | tensor float 32-bit atau 8-bit integer tanpa tanda atau integer 16-bit bilangan bulat atau integer 32-bit atau integer tanpa tanda atau bitteger 64-bit atau jenis integer unsigned atau tipe qi8 atau tipe qi16 atau tipe qui8 atau nilai tipe quint8 tflite quint8 tflite qiint8 |
diagonal | tensor float 32-bit atau 8-bit integer tanpa tanda atau integer 16-bit bilangan bulat atau integer 32-bit atau integer tanpa tanda atau bitteger 64-bit atau jenis integer unsigned atau tipe qi8 atau tipe qi16 atau tipe qui8 atau nilai tipe quint8 tflite quint8 tflite qiint8 |
Hasil:
Hasil | Keterangan |
---|---|
result | tensor float 32-bit atau 8-bit integer tanpa tanda atau integer 16-bit bilangan bulat atau integer 32-bit atau integer tanpa tanda atau bitteger 64-bit atau jenis integer unsigned atau tipe qi8 atau tipe qi16 atau tipe qui8 atau nilai tipe quint8 tflite quint8 tflite qiint8 |
tfl.max_pool_2d
(tfl :: maxpool2dop)
Max Pool 2D OP
Melakukan Max Pool 2D pada Input.
Input: inputs[0]
: Diperlukan: Input Tensor
Ciri -ciri: AlwaysSpeculatableImplTrait
, QuantizableResult
Antarmuka: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
, SameOperandsAndResultsScale
, TflArithmeticCountOpInterface
, TflRuntimeVerifyOpInterface
Efek: MemoryEffects::Effect{}
Atribut:
Atribut | Jenis MLIR | Keterangan |
---|---|---|
padding | :: mlir :: stringattr | atribut string yang nilainya sama, atau valid |
stride_w | :: mlir :: integerattr | Atribut integer 32-bit |
stride_h | :: mlir :: integerattr | Atribut integer 32-bit |
filter_width | :: mlir :: integerattr | Atribut integer 32-bit |
filter_height | :: mlir :: integerattr | Atribut integer 32-bit |
fused_activation_function | :: mlir :: stringattr | atribut string yang nilainya tidak ada, atau relu, atau relu_n1_to_1, atau relu6, atau tanh, atau Sign_bit |
Operan:
Operan | Keterangan |
---|---|
input | tensor 32-bit float atau qui8 type atau qi8 type atau qi16 type atau tflite quint8 values |
Hasil:
Hasil | Keterangan |
---|---|
output | tensor 32-bit float atau qui8 type atau qi8 type atau qi16 type atau tflite quint8 values |
tfl.maximum
(tfl :: maksimum)
Operator Max
Operasi maksimum elemen-bijaksana.
Ciri -ciri: ::mlir::OpTrait::TFLRuntimeOpTrait
ResultsBroadcastableShape
AlwaysSpeculatableImplTrait
, Commutative
, QuantizableResult
,
Antarmuka: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
, SameOperandsAndResultsScale
, TflRuntimeVerifyOpInterface
Efek: MemoryEffects::Effect{}
Operan:
Operan | Keterangan |
---|---|
lhs | tensor float 32-bit atau 32/64-bit integer atau qi8 tipe atau qui8 tipe atau nilai tipe qi16 |
rhs | tensor float 32-bit atau 32/64-bit integer atau qi8 tipe atau qui8 tipe atau nilai tipe qi16 |
Hasil:
Hasil | Keterangan |
---|---|
max | tensor float 32-bit atau 32/64-bit integer atau qi8 tipe atau qui8 tipe atau nilai tipe qi16 |
tfl.mean
(tfl :: meanop)
Operator berarti
Menghitung rata -rata elemen lintas dimensi tensor. Mengurangi input_tensor di sepanjang dimensi yang diberikan dalam sumbu. Kecuali KeepDims benar, peringkat tensor dikurangi dengan 1 untuk setiap entri dalam sumbu. Jika KeepDims benar, dimensi yang dikurangi dipertahankan dengan panjang 1.
Ciri -ciri: AlwaysSpeculatableImplTrait
, QuantizableResult
Antarmuka: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
, TflRuntimeVerifyOpInterface
Efek: MemoryEffects::Effect{}
Atribut:
Atribut | Jenis MLIR | Keterangan |
---|---|---|
keep_dims | :: mlir :: boolattr | atribut bool |
Operan:
Operan | Keterangan |
---|---|
input | tensor 32-bit float atau 32-bit integer tanpa tanda atau 64-bit integer tanpa tanda atau tipe qi8 atau tipe qui8 atau 8-bit unsigned integer atau qi16 jenis nilai |
axis | Tensor Nilai Integer Tanda Tanda Tanda Tanda |
Hasil:
Hasil | Keterangan |
---|---|
output | tensor 32-bit float atau 32-bit integer tanpa tanda atau 64-bit integer tanpa tanda atau tipe qi8 atau tipe qui8 atau 8-bit unsigned integer atau qi16 jenis nilai |
tfl.minimum
(tfl :: minimumop)
Operator min
Operasi Min-Wise Min.
Ciri -ciri: ::mlir::OpTrait::TFLRuntimeOpTrait
ResultsBroadcastableShape
AlwaysSpeculatableImplTrait
, Commutative
, QuantizableResult
,
Antarmuka: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
, SameOperandsAndResultsScale
, TflRuntimeVerifyOpInterface
Efek: MemoryEffects::Effect{}
Operan:
Operan | Keterangan |
---|---|
lhs | tensor float 32-bit atau 32/64-bit integer atau qi8 tipe atau qui8 tipe atau nilai tipe qi16 |
rhs | tensor of 32-bit float or 32/64-bit signless integer or QI8 type or QUI8 type or QI16 type values |
Hasil:
Hasil | Keterangan |
---|---|
min | tensor of 32-bit float or 32/64-bit signless integer or QI8 type or QUI8 type or QI16 type values |
tfl.mirror_pad
(TFL::MirrorPadOp)
MirrorPad Operator. Pads a tensor with mirrored values.
This operation pads a input with mirrored values according to the paddings you specify. paddings is an integer tensor with shape [n, 2], where n is the rank of input. For each dimension D of input, paddings[D, 0] indicates how many values to add before the contents of input in that dimension, and paddings[D, 1] indicates how many values to add after the contents of input in that dimension.
Both paddings[D, 0] and paddings[D, 1] must be no greater than input.dim_size(D) (or input.dim_size(D) - 1) if copy_border is true (if false, respectively).
The padded size of each dimension D of the output is:
paddings(D, 0) + input.dim_size(D) + paddings(D, 1)
Traits: AlwaysSpeculatableImplTrait
, QuantizableResult
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
, SameOperandsAndResultsScale
, TflRuntimeVerifyOpInterface
Effects: MemoryEffects::Effect{}
Attributes:
Atribut | MLIR Type | Keterangan |
---|---|---|
mode | ::mlir::TFL::MirrorPaddingTypeAttr | mirror_pad_enum |
Operands:
Operand | Keterangan |
---|---|
input | tensor of 32-bit float or 32-bit signless integer or 64-bit signless integer or 8-bit signless integer or 8-bit unsigned integer or QI8 type or QUI8 type or QI16 type values |
pad | tensor of 32-bit signless integer or 64-bit signless integer values |
Hasil:
Hasil | Keterangan |
---|---|
output | tensor of 32-bit float or 32-bit signless integer or 64-bit signless integer or 8-bit signless integer or 8-bit unsigned integer or QI8 type or QUI8 type or QI16 type values |
tfl.mul
(TFL::MulOp)
Multiplication operator
Element-wise multiplication operation.
Traits: ::mlir::OpTrait::TFLRuntimeOpTrait
, AlwaysSpeculatableImplTrait
, Commutative
, QuantizableResult
, ResultsBroadcastableShape
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
, TflArithmeticCountOpInterface
, TflRuntimeVerifyOpInterface
Effects: MemoryEffects::Effect{}
Attributes:
Atribut | MLIR Type | Keterangan |
---|---|---|
fused_activation_function | ::mlir::StringAttr | string attribute whose value is NONE, or RELU, or RELU_N1_TO_1, or RELU6, or TANH, or SIGN_BIT |
Operands:
Operand | Keterangan |
---|---|
lhs | tensor of 32-bit float or 32-bit signless integer or 32-bit unsigned integer or 64-bit signless integer or QI8 type or QUI8 type or QI16 type or 16-bit signless integer or complex type with 32-bit float elements values |
rhs | tensor of 32-bit float or 32-bit signless integer or 32-bit unsigned integer or 64-bit signless integer or QI8 type or QUI8 type or QI16 type or 16-bit signless integer or complex type with 32-bit float elements values |
Hasil:
Hasil | Keterangan |
---|---|
output | tensor of 32-bit float or 32-bit signless integer or 32-bit unsigned integer or 64-bit signless integer or QI8 type or QUI8 type or QI16 type or 16-bit signless integer or complex type with 32-bit float elements values |
tfl.multinomial
(TFL::MultinomialOp)
Draws samples from a categorical distribution.
The generated values will have a categorical distribution based on the logits
or unnormalized log-probabilities provided for all classes.
Interfaces: TflRuntimeVerifyOpInterface
Attributes:
Atribut | MLIR Type | Keterangan |
---|---|---|
seed | ::mlir::IntegerAttr | 64-bit signless integer attribute |
seed2 | ::mlir::IntegerAttr | 64-bit signless integer attribute |
Operands:
Operand | Keterangan |
---|---|
logits | tensor of 32-bit float values |
num_samples | tensor of 32-bit signless integer values |
Hasil:
Hasil | Keterangan |
---|---|
out | tensor of 32-bit signless integer or 64-bit signless integer values |
tfl.neg
(TFL::NegOp)
Negation operator
Computes element-wise negation of input
Traits: AlwaysSpeculatableImplTrait
, InferTensorType
, TF::SameOperandsAndResultTypeResolveRef
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
, TflRuntimeVerifyOpInterface
Effects: MemoryEffects::Effect{}
Operands:
Operand | Keterangan |
---|---|
x | tensor of 32-bit float or 32-bit signless integer or 64-bit signless integer values |
Hasil:
Hasil | Keterangan |
---|---|
y | tensor of 32-bit float or 32-bit signless integer or 64-bit signless integer values |
tfl.no_value
(TFL::NoValueOp)
Constant representing no value.
No value constant op.
Traits: AlwaysSpeculatableImplTrait
, ConstantLike
Interfaces: ConditionallySpeculatable
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:
Atribut | MLIR Type | Keterangan |
---|---|---|
value | ::mlir::UnitAttr | unit attribute |
Hasil:
Hasil | Keterangan |
---|---|
none_val | none type |
tfl.non_max_suppression_v4
(TFL::NonMaxSuppressionV4Op)
Greedily selects a subset of bounding boxes in descending order of score,
pruning away boxes that have high intersection-over-union (IOU) overlap with previously selected boxes. Bounding boxes with score less than score_threshold
are removed. Bounding boxes are supplied as [y1, x1, y2, x2], where (y1, x1) and (y2, x2) are the coordinates of any diagonal pair of box corners and the coordinates can be provided as normalized (ie, lying in the interval [0, 1]) or absolute. Note that this algorithm is agnostic to where the origin is in the coordinate system and more generally is invariant to orthogonal transformations and translations of the coordinate system; thus translating or reflections of the coordinate system result in the same boxes being selected by the algorithm. The output of this operation is a set of integers indexing into the input collection of bounding boxes representing the selected boxes. The bounding box coordinates corresponding to the selected indices can then be obtained using the tf.gather operation
. For example: selected_indices = tf.image.non_max_suppression_v2( boxes, scores, max_output_size, iou_threshold, score_threshold) selected_boxes = tf.gather(boxes, selected_indices)
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
, TflRuntimeVerifyOpInterface
Effects: MemoryEffects::Effect{}
Operands:
Operand | Keterangan |
---|---|
boxes | tensor of 32-bit float values |
scores | tensor of 32-bit float values |
max_output_size | tensor of 32-bit signless integer values |
iou_threshold | tensor of 32-bit float values |
score_threshold | tensor of 32-bit float values |
Hasil:
Hasil | Keterangan |
---|---|
selected_indices | tensor of 32-bit signless integer values |
valid_outputs | tensor of 32-bit signless integer values |
tfl.non_max_suppression_v5
(TFL::NonMaxSuppressionV5Op)
Greedily selects a subset of bounding boxes in descending order of score,
pruning away boxes that have high intersection-over-union (IOU) overlap with previously selected boxes. Bounding boxes with score less than score_threshold
are removed. Bounding boxes are supplied as [y1, x1, y2, x2], where (y1, x1) and (y2, x2) are the coordinates of any diagonal pair of box corners and the coordinates can be provided as normalized (ie, lying in the interval [0, 1]) or absolute. Note that this algorithm is agnostic to where the origin is in the coordinate system and more generally is invariant to orthogonal transformations and translations of the coordinate system; thus translating or reflections of the coordinate system result in the same boxes being selected by the algorithm. The output of this operation is a set of integers indexing into the input collection of bounding boxes representing the selected boxes. The bounding box coordinates corresponding to the selected indices can then be obtained using the tf.gather operation
. For example: selected_indices = tf.image.non_max_suppression_v2( boxes, scores, max_output_size, iou_threshold, score_threshold) selected_boxes = tf.gather(boxes, selected_indices) This op also supports a Soft-NMS (with Gaussian weighting) mode (cf Bodla et al, https://arxiv.org/abs/1704.04503 ) where boxes reduce the score of other overlapping boxes instead of directly causing them to be pruned. To enable this Soft-NMS mode, set the soft_nms_sigma
parameter to be larger than 0.
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
, TflRuntimeVerifyOpInterface
Effects: MemoryEffects::Effect{}
Operands:
Operand | Keterangan |
---|---|
boxes | tensor of 32-bit float values |
scores | tensor of 32-bit float values |
max_output_size | tensor of 32-bit signless integer values |
iou_threshold | tensor of 32-bit float values |
score_threshold | tensor of 32-bit float values |
soft_nms_sigma | tensor of 32-bit float values |
Hasil:
Hasil | Keterangan |
---|---|
selected_indices | tensor of 32-bit signless integer values |
selected_scores | tensor of 32-bit float values |
valid_outputs | tensor of 32-bit signless integer values |
tfl.not_equal
(TFL::NotEqualOp)
_Not equal operator
Element-wise not_equal operation.
Traits: ::mlir::OpTrait::TFLRuntimeOpTrait
, AlwaysSpeculatableImplTrait
, Commutative
, ResultsBroadcastableShape
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
, TflRuntimeVerifyOpInterface
Effects: MemoryEffects::Effect{}
Operands:
Operand | Keterangan |
---|---|
lhs | tensor of 1-bit signless integer or 32-bit float or 32-bit signless integer or 64-bit signless integer or QUI8 type or QI8 type or TFLite quint8 type or TFLite string type values |
rhs | tensor of 1-bit signless integer or 32-bit float or 32-bit signless integer or 64-bit signless integer or QUI8 type or QI8 type or TFLite quint8 type or TFLite string type values |
Hasil:
Hasil | Keterangan |
---|---|
output | tensor of 1-bit signless integer values |
tfl.NumericVerify
(TFL::NumericVerifyOp)
Verifies the numericals of the two operands
The NumericVerify op is a debugging op to verify the numericals of the two activations. It is a custom op in TFLite. If log_if_failed is true, the NumericVerify op calculates statistics on differences between float and quantized activations, output logs, set differences to the output tensors, and throws an error if errors above tolerance exist. If log_if_failed = false, then it doesn't care about errors.
Traits: QuantizableResult
, SameOperandsShape
Interfaces: TflRuntimeVerifyOpInterface
Attributes:
Atribut | MLIR Type | Keterangan |
---|---|---|
tolerance | ::mlir::FloatAttr | 32-bit float attribute |
log_if_failed | ::mlir::BoolAttr | bool attribute |
Operands:
Operand | Keterangan |
---|---|
input | tensor of QI8 type or QUI8 type or QI16 type or 16-bit float or TFLite quint8 type values |
ref | tensor of 32-bit float values |
Hasil:
Hasil | Keterangan |
---|---|
output | tensor of 32-bit float values |
tfl.one_hot
(TFL::OneHotOp)
OneHot operator
Returns a one-hot tensor.The locations represented by indices in indices
take value on_value
, while all other locations take value off_value
.
If the input indices
is rank N
, the output will have rank N+1
, The new axis is created at dimension axis
(default: the new axis is appended at the end).
Traits: AlwaysSpeculatableImplTrait
, QuantizableResult
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
, TflRuntimeVerifyOpInterface
Effects: MemoryEffects::Effect{}
Attributes:
Atribut | MLIR Type | Keterangan |
---|---|---|
axis | ::mlir::IntegerAttr | 32-bit signless integer attribute |
Operands:
Operand | Keterangan |
---|---|
indices | tensor of 32-bit signless integer or 64-bit signless integer values |
depth | tensor of 32-bit signless integer values |
on_value | tensor of 32-bit float or 32-bit signless integer or 64-bit signless integer or 1-bit signless integer or 8-bit signless integer or 8-bit unsigned integer values |
off_value | tensor of 32-bit float or 32-bit signless integer or 64-bit signless integer or 1-bit signless integer or 8-bit signless integer or 8-bit unsigned integer values |
Hasil:
Hasil | Keterangan |
---|---|
output | tensor of 32-bit float or 32-bit signless integer or 64-bit signless integer or 1-bit signless integer or 8-bit signless integer or 8-bit unsigned integer values |
tfl.pack
(TFL::PackOp)
Packs a list of tensors along a dimension into one tensor
Packs a list of values_count
rank- R
tensors into one rank- (R+1)
tensor.
Packs the values_count
tensors in values
into a tensor with rank one higher than each tensor in values
, by packing them along the axis
dimension.
Given a list of tensors of shape (A, B, C)
;
if axis == 0
then the output
tensor will have the shape (N, A, B, C)
. if axis == 1
then the output
tensor will have the shape (A, N, B, C)
. Dll.
Misalnya:
# 'x' is [1, 4]
# 'y' is [2, 5]
# 'z' is [3, 6]
pack([x, y, z]) => [[1, 4], [2, 5], [3, 6]] # Pack along first dim.
pack([x, y, z], axis=1) => [[1, 2, 3], [4, 5, 6]]
This is the opposite of unpack
.
Traits: AlwaysSpeculatableImplTrait
, QuantizableResult
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
, SameOperandsAndResultsScale
, TflRuntimeVerifyOpInterface
Effects: MemoryEffects::Effect{}
Attributes:
Atribut | MLIR Type | Keterangan |
---|---|---|
values_count | ::mlir::IntegerAttr | 32-bit signless integer attribute whose value is positive |
axis | ::mlir::IntegerAttr | 32-bit signless integer attribute |
Operands:
Operand | Keterangan |
---|---|
values | variadic of tensor of any type values |
Hasil:
Hasil | Keterangan |
---|---|
output | tensor of 32-bit float or 8-bit signless integer or 16-bit signless integer or 32-bit signless integer or 64-bit signless integer or 8-bit unsigned integer or 32-bit unsigned integer or QI8 type or QUI8 type or QI16 type or TFLite quint8 type values |
tfl.pad
(TFL::PadOp)
Padding operator
This operation pads a input
with zeros according to the paddings
you specify. paddings
is an integer tensor with shape [Dn, 2]
, where n is the rank of input
. For each dimension D of input
, paddings[D, 0]
indicates how many zeros to add before the contents of input
in that dimension, and paddings[D, 1]
indicates how many zeros to add after the contents of input
in that dimension.
The padded size of each dimension D of the output is:
paddings(D, 0) + input.dim_size(D) + paddings(D, 1)
Misalnya:
# 't' is [[1, 1], [2, 2]]
# 'paddings' is [[1, 1], [2, 2]]
# rank of 't' is 2
pad(t, paddings) ==> [[0, 0, 0, 0, 0, 0]
[0, 0, 1, 1, 0, 0]
[0, 0, 2, 2, 0, 0]
[0, 0, 0, 0, 0, 0]]
Traits: AlwaysSpeculatableImplTrait
, QuantizableResult
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
, SameOperandsAndResultsScale
, TflRuntimeVerifyOpInterface
Effects: MemoryEffects::Effect{}
Operands:
Operand | Keterangan |
---|---|
input | tensor of 32-bit float or 32-bit signless integer or 64-bit signless integer or QI8 type or QUI8 type or TFLite quint8 type or QI16 type values |
padding | tensor of 32/64-bit signless integer values |
Hasil:
Hasil | Keterangan |
---|---|
output | tensor of 32-bit float or 32-bit signless integer or 64-bit signless integer or QI8 type or QUI8 type or TFLite quint8 type or QI16 type values |
tfl.padv2
(TFL::PadV2Op)
Padding operator v2
This operation pads a input
according to the paddings
and constant_values
you specify. paddings
is an integer tensor with shape [Dn, 2]
, where n is the rank of input
. For each dimension D of input
, paddings[D, 0]
indicates how many zeros to add before the contents of input
in that dimension, and paddings[D, 1]
indicates how many zeros to add after the contents of input
in that dimension. constant_values
is a scalar tensor of the same type as input
that indicates the value to use for padding input
.
The padded size of each dimension D of the output is:
paddings(D, 0) + input.dim_size(D) + paddings(D, 1)
Misalnya:
# 't' is [[1, 1], [2, 2]]
# 'paddings' is [[1, 1], [2, 2]]
# rank of 't' is 2
pad(t, paddings) ==> [[0, 0, 0, 0, 0, 0]
[0, 0, 1, 1, 0, 0]
[0, 0, 2, 2, 0, 0]
[0, 0, 0, 0, 0, 0]]
Traits: AlwaysSpeculatableImplTrait
, QuantizableResult
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
, SameOperandsAndResultsScale
, TflRuntimeVerifyOpInterface
Effects: MemoryEffects::Effect{}
Operands:
Operand | Keterangan |
---|---|
input | tensor of 32-bit float or 32-bit signless integer or 64-bit signless integer or 8-bit unsigned integer or QI8 type or QUI8 type or TFLite quint8 type values |
padding | tensor of 32/64-bit signless integer values |
constant_values | tensor of 32-bit float or 32-bit signless integer or 64-bit signless integer or 8-bit unsigned integer or QI8 type or QUI8 type or TFLite quint8 type values |
Hasil:
Hasil | Keterangan |
---|---|
output | tensor of 32-bit float or 32-bit signless integer or 64-bit signless integer or 8-bit unsigned integer or QI8 type or QUI8 type or TFLite quint8 type values |
tfl.poly_call
(TFL::PolyCallOp)
Poly call
Have multiple function bodies for the same computation. This allows a program compiler/interpreter to choose one of the available options to execute the program based on which one is most suitable for the target backend.
input: A list of input tensors whose types are T. output: A list of output tensors whose types are T.
call: Multiple regions, each of which encapsulates the same semantic computation but in different forms.
Traits: SingleBlockImplicitTerminator<YieldOp>
, SingleBlock
Interfaces: RegionBranchOpInterface
Operands:
Operand | Keterangan |
---|---|
input | variadic of tensor of any type values |
Hasil:
Hasil | Keterangan |
---|---|
output | variadic of tensor of any type values |
tfl.pow
(TFL::PowOp)
Power operator
Element-wise power operation.
Traits: ::mlir::OpTrait::TFLRuntimeOpTrait
, AlwaysSpeculatableImplTrait
, ResultsBroadcastableShape
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
, TflRuntimeVerifyOpInterface
Effects: MemoryEffects::Effect{}
Operands:
Operand | Keterangan |
---|---|
lhs | tensor of 32-bit float or 32-bit signless integer values |
rhs | tensor of 32-bit float or 32-bit signless integer values |
Hasil:
Hasil | Keterangan |
---|---|
output | tensor of 32-bit float or 32-bit signless integer values |
tfl.prelu
(TFL::PReluOp)
Parameterized Relu operator
Parameterized Relu operator x -> x >= 0 ? x : (alpha * x) where alpha is a trainable tensor. input and alpha should be the same size as input or be broadcastable.
Traits: ::mlir::OpTrait::TFLRuntimeOpTrait
, AlwaysSpeculatableImplTrait
, QuantizableResult
, ResultsBroadcastableShape
, quant::AffineOpCoefficient<-1, 1>
Interfaces: AffineQuantizedOpInterface
, ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
, TflRuntimeVerifyOpInterface
Effects: MemoryEffects::Effect{}
Operands:
Operand | Keterangan |
---|---|
input | tensor of 32-bit float or QI8 type or QUI8 type or TFLite quint8 type values |
alpha | tensor of 32-bit float or QI8 type or QUI8 type or TFLite quint8 type values |
Hasil:
Hasil | Keterangan |
---|---|
output | tensor of 32-bit float or QI8 type or QUI8 type or TFLite quint8 type values |
tfl.pseudo_const
(TFL::ConstOp)
Constant pseudo op.
Represents a constant value in TensorFlow Lite dialect. This is not an actual operation and it will be lowered to buffer instead.
The op is allowed to have all the same type of attributes as tf.Const does (eg, opaque TF attributes are allowed).
Traits: AlwaysSpeculatableImplTrait
, ConstantLike
, FirstAttrDerivedResultType
, QuantizableResult
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
, TflRuntimeVerifyOpInterface
Effects: MemoryEffects::Effect{}
Attributes:
Atribut | MLIR Type | Keterangan |
---|---|---|
value | ::mlir::ElementsAttr | constant vector/tensor attribute |
Hasil:
Hasil | Keterangan |
---|---|
output | tensor of any type values |
tfl.pseudo_qconst
(TFL::QConstOp)
Quantized constant pseudo op
Represents a quantized constant value in TensorFlow Lite dialect. This is not an actual operation and it will be lowered to buffer instead. The quantization parameters are stored as a type attribute in this constant.
Traits: AlwaysSpeculatableImplTrait
, FirstAttrDerivedResultType
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
Effects: MemoryEffects::Effect{}
Attributes:
Atribut | MLIR Type | Keterangan |
---|---|---|
qtype | ::mlir::TypeAttr | Tensor type attribute |
value | ::mlir::ElementsAttr | constant vector/tensor attribute |
Hasil:
Hasil | Keterangan |
---|---|
output | tensor of QUI8 type or QI8 type or QI16 type or QUI16 type or TFLite quint8 type values |
tfl.pseudo_sparse_const
(TFL::SparseConstOp)
Sparse constant pseudo op.
Represents a sparse constant value in TensorFlow Lite dialect. This is not an actual operation and it will be lowered to buffer instead.
Traits: AlwaysSpeculatableImplTrait
, FirstAttrDerivedResultType
, QuantizableResult
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
, TflRuntimeVerifyOpInterface
Effects: MemoryEffects::Effect{}
Attributes:
Atribut | MLIR Type | Keterangan |
---|---|---|
value | ::mlir::ElementsAttr | constant vector/tensor attribute |
s_param | ::mlir::TFL::SparsityParameterAttr | Sparsity parameter. |
compressed_data | ::mlir::ElementsAttr | constant vector/tensor attribute |
Hasil:
Hasil | Keterangan |
---|---|
output | tensor of any type values |
tfl.pseudo_sparse_qconst
(TFL::SparseQConstOp)
Sparse quantized constant pseudo op
Represents a sparse quantized constant value in TensorFlow Lite dialect. This is not an actual operation and it will be lowered to buffer instead. The quantization parameters are stored as a type attribute in this constant.
Traits: AlwaysSpeculatableImplTrait
, FirstAttrDerivedResultType
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
, TflRuntimeVerifyOpInterface
Effects: MemoryEffects::Effect{}
Attributes:
Atribut | MLIR Type | Keterangan |
---|---|---|
qtype | ::mlir::TypeAttr | Tensor type attribute |
value | ::mlir::ElementsAttr | constant vector/tensor attribute |
s_param | ::mlir::TFL::SparsityParameterAttr | Sparsity parameter. |
compressed_data | ::mlir::ElementsAttr | constant vector/tensor attribute |
Hasil:
Hasil | Keterangan |
---|---|
output | tensor of QUI8 type or QI8 type or QI16 type or QUI16 type or TFLite quint8 type values |
tfl.quantize
(TFL::QuantizeOp)
Quantize operator
Converts floating point tensors to quantized integer tensors according to the quantization parameters defined in the type attribute.
Traits: FirstAttrDerivedResultType
, SameOperandsAndResultShape
Interfaces: NoMemoryEffect (MemoryEffectOpInterface)
, TflRuntimeVerifyOpInterface
Effects: MemoryEffects::Effect{}
Attributes:
Atribut | MLIR Type | Keterangan |
---|---|---|
qtype | ::mlir::TypeAttr | Tensor type attribute |
Operands:
Operand | Keterangan |
---|---|
input | tensor of 32-bit float or QI4 type or QI8 type or QUI8 type or QI16 type or TFLite quint8 type values |
Hasil:
Hasil | Keterangan |
---|---|
output | tensor of QI4 type or QI8 type or QUI8 type or QI16 type or TFLite quint8 type values |
tfl.random_standard_normal
(TFL::RandomStandardNormalOp)
Outputs random values from a normal distribution.
The generated values will have mean 0 and standard deviation 1.
Interfaces: TflRuntimeVerifyOpInterface
Attributes:
Atribut | MLIR Type | Keterangan |
---|---|---|
seed | ::mlir::IntegerAttr | 64-bit signless integer attribute |
seed2 | ::mlir::IntegerAttr | 64-bit signless integer attribute |
Operands:
Operand | Keterangan |
---|---|
shape | tensor of 32-bit signless integer values |
Hasil:
Hasil | Keterangan |
---|---|
out | tensor of 32-bit float values |
tfl.random_uniform
(TFL::RandomUniformOp)
Outputs random values from a uniform distribution.
The generated values follow a uniform distribution in the range [0, 1)
. The lower bound 0 is included in the range, while the upper bound 1 is excluded.
Interfaces: TflRuntimeVerifyOpInterface
Attributes:
Atribut | MLIR Type | Keterangan |
---|---|---|
seed | ::mlir::IntegerAttr | 64-bit signless integer attribute |
seed2 | ::mlir::IntegerAttr | 64-bit signless integer attribute |
Operands:
Operand | Keterangan |
---|---|
shape | tensor of 32-bit signless integer values |
Hasil:
Hasil | Keterangan |
---|---|
out | tensor of 32-bit float values |
tfl.range
(TFL::RangeOp)
Range operator
Returns a 1D tensor defined by a sequence from start
to limit
with a given delta
.
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
, TflRuntimeVerifyOpInterface
Effects: MemoryEffects::Effect{}
Operands:
Operand | Keterangan |
---|---|
start | tensor of 32-bit signless integer or 32-bit float or 64-bit signless integer values |
limit | tensor of 32-bit signless integer or 32-bit float or 64-bit signless integer values |
delta | tensor of 32-bit signless integer or 32-bit float or 64-bit signless integer values |
Hasil:
Hasil | Keterangan |
---|---|
result | tensor of 32-bit signless integer or 32-bit float or 64-bit signless integer values |
tfl.rank
(TFL::RankOp)
Rank operator.
Returns the rank of a tensor.
Traits: AlwaysSpeculatableImplTrait
, QuantizableResult
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
, TflRuntimeVerifyOpInterface
Effects: MemoryEffects::Effect{}
Operands:
Operand | Keterangan |
---|---|
input | tensor of any type values |
Hasil:
Hasil | Keterangan |
---|---|
output | tensor of any integer type |
tfl.read_variable
(TFL::ReadVariableOp)
Reads variable value.
Read variable data identified by 'resource_id'.
Interfaces: TflRuntimeVerifyOpInterface
Operands:
Operand | Keterangan |
---|---|
resource_id | tensor of resource values |
Hasil:
Hasil | Keterangan |
---|---|
result | tensor of 32-bit float or 64-bit float or 1-bit signless integer or 8-bit unsigned integer or 8-bit signless integer or QI8 type or QUI8 type or 32-bit signless integer or 64-bit signless integer or QI16 type or complex type with 32-bit float elements or complex type with 64-bit float elements values |
tfl.real
(TFL::RealOp)
Returns the real part of a complex number.
Given a tensor input
of complex numbers, this operation returns a tensor of type float
that is the real part of each element in input
. All elements in input
must be complex numbers of the form \(a + bj\), where a is the real part returned by this operation and b is the imaginary part.
Traits: AlwaysSpeculatableImplTrait
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
, TflRuntimeVerifyOpInterface
Effects: MemoryEffects::Effect{}
Operands:
Operand | Keterangan |
---|---|
input | tensor of complex type with 32-bit float elements or complex type with 64-bit float elements values |
Hasil:
Hasil | Keterangan |
---|---|
output | tensor of 32-bit float or 64-bit float values |
tfl.reduce_all
(TFL::ReduceAllOp)
Computes the "logical and" of elements across dimensions of a tensor.
Reduces input
along the dimensions given in axis
. Unless keep_dims
is true, the rank of the tensor is reduced by 1 for each entry in axis
. If keep_dims
is true, the reduced dimensions are retained with length 1.
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
, TflRuntimeVerifyOpInterface
Effects: MemoryEffects::Effect{}
Attributes:
Atribut | MLIR Type | Keterangan |
---|---|---|
keep_dims | ::mlir::BoolAttr | bool attribute |
Operands:
Operand | Keterangan |
---|---|
input | tensor of 1-bit signless integer values |
reduction_indices | tensor of 32-bit signless integer values |
Hasil:
Hasil | Keterangan |
---|---|
output | tensor of 1-bit signless integer values |
tfl.reduce_any
(TFL::ReduceAnyOp)
Computes the "logical or" of elements across dimensions of a tensor.
Reduces input
along the dimensions given in axis
. Unless keep_dims
is true, the rank of the tensor is reduced by 1 for each entry in axis
. If keep_dims
is true, the reduced dimensions are retained with length 1.
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
, TflRuntimeVerifyOpInterface
Effects: MemoryEffects::Effect{}
Attributes:
Atribut | MLIR Type | Keterangan |
---|---|---|
keep_dims | ::mlir::BoolAttr | bool attribute |
Operands:
Operand | Keterangan |
---|---|
input | tensor of 1-bit signless integer values |
reduction_indices | tensor of 32-bit signless integer values |
Hasil:
Hasil | Keterangan |
---|---|
output | tensor of 1-bit signless integer values |
tfl.reduce_max
(TFL::ReduceMaxOp)
Max-reduction operator
Computes the max reduction along the specified axes
Traits: AlwaysSpeculatableImplTrait
, QuantizableResult
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
, SameOperandsAndResultsScale
, TflRuntimeVerifyOpInterface
Effects: MemoryEffects::Effect{}
Attributes:
Atribut | MLIR Type | Keterangan |
---|---|---|
keep_dims | ::mlir::BoolAttr | bool attribute |
Operands:
Operand | Keterangan |
---|---|
input | tensor of 32-bit float or 32-bit signless integer or 64-bit signless integer or QI8 type or QUI8 type or TFLite quint8 type or QI16 type values |
axes | tensor of 32-bit signless integer values |
Hasil:
Hasil | Keterangan |
---|---|
output | tensor of 32-bit float or 32-bit signless integer or 64-bit signless integer or QI8 type or QUI8 type or TFLite quint8 type or QI16 type values |
tfl.reduce_min
(TFL::ReduceMinOp)
Min-reduction operator
Computes the min reduction along the specified axes
Traits: AlwaysSpeculatableImplTrait
, QuantizableResult
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
, SameOperandsAndResultsScale
, TflRuntimeVerifyOpInterface
Effects: MemoryEffects::Effect{}
Attributes:
Atribut | MLIR Type | Keterangan |
---|---|---|
keep_dims | ::mlir::BoolAttr | bool attribute |
Operands:
Operand | Keterangan |
---|---|
input | tensor of 32-bit float or 32-bit signless integer or 64-bit signless integer or QI8 type or QUI8 type or TFLite quint8 type or QI16 type values |
axes | tensor of 32-bit signless integer values |
Hasil:
Hasil | Keterangan |
---|---|
output | tensor of 32-bit float or 32-bit signless integer or 64-bit signless integer or QI8 type or QUI8 type or TFLite quint8 type or QI16 type values |
tfl.reduce_prod
(TFL::ReduceProdOp)
Prod-reduction operator
Computes the product along the specified axes
Traits: AlwaysSpeculatableImplTrait
, QuantizableResult
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
, TflRuntimeVerifyOpInterface
Effects: MemoryEffects::Effect{}
Attributes:
Atribut | MLIR Type | Keterangan |
---|---|---|
keep_dims | ::mlir::BoolAttr | bool attribute |
Operands:
Operand | Keterangan |
---|---|
input | tensor of 32-bit float or 32-bit signless integer or 64-bit signless integer or QI8 type or QUI8 type or TFLite quint8 type or QI16 type values |
axes | tensor of 32-bit signless integer values |
Hasil:
Hasil | Keterangan |
---|---|
output | tensor of 32-bit float or 32-bit signless integer or 64-bit signless integer or QI8 type or QUI8 type or TFLite quint8 type or QI16 type values |
tfl.relu
(TFL::ReluOp)
Relu operator
Element-wise Relu operator x -> max(0, x)
Traits: AlwaysSpeculatableImplTrait
, QuantizableResult
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
, TflRuntimeVerifyOpInterface
Effects: MemoryEffects::Effect{}
Operands:
Operand | Keterangan |
---|---|
x | tensor of 32-bit float or QUI8 type or QI8 type or QI16 type values |
Hasil:
Hasil | Keterangan |
---|---|
y | tensor of 32-bit float or QUI8 type or QI8 type or QI16 type values |
tfl.relu6
(TFL::Relu6Op)
Relu6 operator
Element-wise Relu6 operator x -> max(0, min(6, x))
Traits: AlwaysSpeculatableImplTrait
, QuantizableResult
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
, TflRuntimeVerifyOpInterface
Effects: MemoryEffects::Effect{}
Operands:
Operand | Keterangan |
---|---|
x | tensor of 32-bit float or QUI8 type or QI8 type values |
Hasil:
Hasil | Keterangan |
---|---|
y | tensor of 32-bit float or QUI8 type or QI8 type values |
tfl.relu_0_to_1
(TFL::Relu0To1Op)
Relu0To1 operator
Element-wise Relu0To1 operator x -> max(0, min(1, x))
Traits: AlwaysSpeculatableImplTrait
, QuantizableResult
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
, TflRuntimeVerifyOpInterface
Effects: MemoryEffects::Effect{}
Operands:
Operand | Keterangan |
---|---|
x | tensor of 32-bit float or QUI8 type or QI8 type values |
Hasil:
Hasil | Keterangan |
---|---|
y | tensor of 32-bit float or QUI8 type or QI8 type values |
tfl.relu_n1_to_1
(TFL::Relu1Op)
Relu1 operator
Element-wise Relu1 operator x -> max(-1, min(1, x))
Traits: AlwaysSpeculatableImplTrait
, QuantizableResult
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
, TflRuntimeVerifyOpInterface
Effects: MemoryEffects::Effect{}
Operands:
Operand | Keterangan |
---|---|
x | tensor of 32-bit float or QUI8 type or QI8 type values |
Hasil:
Hasil | Keterangan |
---|---|
y | tensor of 32-bit float or QUI8 type or QI8 type values |
tfl.reshape
(TFL::ReshapeOp)
Reshape operator
Produces a tensor with the same values but different static shape defined by the output type.
Traits: AlwaysSpeculatableImplTrait
, QuantizableResult
Interfaces: ConditionallySpeculatable
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
, SameOperandsAndResultsScale
, TflRuntimeVerifyOpInterface
Effects: MemoryEffects::Effect{}
Operands:
Operand | Keterangan |
---|---|
input | tensor of any type values |
shape | tensor of 32-bit signless integer values |
Hasil:
Hasil | Keterangan |
---|---|
output | tensor of any type values |
tfl.resize_bilinear
(TFL::ResizeBilinearOp)
ResizeBilinear Op
Resize images
to size
using bilinear interpolation.
Traits: AlwaysSpeculatableImplTrait
, QuantizableResult
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
, SameOperandsAndResultsScale
, TflRuntimeVerifyOpInterface
Effects: MemoryEffects::Effect{}
Attributes:
Atribut | MLIR Type | Keterangan |
---|---|---|
align_corners | ::mlir::BoolAttr | bool attribute |
half_pixel_centers | ::mlir::BoolAttr | bool attribute |
Operands:
Operand | Keterangan |
---|---|
input | tensor of 32-bit float or TFLite quint8 type or QUI8 type or QI8 type or QI16 type values |
size | tensor of 32-bit signless integer values |
Hasil:
Hasil | Keterangan |
---|---|
output | tensor of 32-bit float or TFLite quint8 type or QUI8 type or QI8 type or QI16 type values |
tfl.resize_nearest_neighbor
(TFL::ResizeNearestNeighborOp)
ResizeNearestNeighbor Op
Resize images
to size
using nearest neighbor interpolation.
Traits: AlwaysSpeculatableImplTrait
, QuantizableResult
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
, SameOperandsAndResultsScale
, TflRuntimeVerifyOpInterface
Effects: MemoryEffects::Effect{}
Attributes:
Atribut | MLIR Type | Keterangan |
---|---|---|
align_corners | ::mlir::BoolAttr | bool attribute |
half_pixel_centers | ::mlir::BoolAttr | bool attribute |
Operands:
Operand | Keterangan |
---|---|
input | tensor of 32-bit float or TFLite quint8 type or QUI8 type or QI8 type or QI16 type values |
size | tensor of 32-bit signless integer values |
Hasil:
Hasil | Keterangan |
---|---|
output | tensor of 32-bit float or TFLite quint8 type or QUI8 type or QI8 type or QI16 type values |
tfl.reverse_sequence
(TFL::ReverseSequenceOp)
Reverses variable length slices.
This op first slices input
along the dimension batch_dim
, and for each slice i
, reverses the first seq_lengths[i]
elements along the dimension seq_dim
.
The elements of seq_lengths
must obey seq_lengths[i] <= input.dims[seq_dim]
, and seq_lengths
must be a vector of length input.dims[batch_dim]
.
The output slice i
along dimension batch_dim
is then given by input slice i
, with the first seq_lengths[i]
slices along dimension seq_dim
reversed.
Traits: AlwaysSpeculatableImplTrait
, QuantizableResult
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
, TflRuntimeVerifyOpInterface
Effects: MemoryEffects::Effect{}
Attributes:
Atribut | MLIR Type | Keterangan |
---|---|---|
seq_dim | ::mlir::IntegerAttr | 32-bit signless integer attribute whose value is non-negative |
batch_dim | ::mlir::IntegerAttr | 32-bit signless integer attribute whose value is non-negative |
Operands:
Operand | Keterangan |
---|---|
input | tensor of 32-bit float or 32-bit signless integer or 64-bit signless integer or QI16 type or QUI8 type or TFLite quint8 type values |
seq_lengths | tensor of 32/64-bit signless integer values |
Hasil:
Hasil | Keterangan |
---|---|
output | tensor of 32-bit float or 32-bit signless integer or 64-bit signless integer or QI16 type or QUI8 type or TFLite quint8 type values |
tfl.reverse_v2
(TFL::ReverseV2Op)
ReverseV2 Operator
Reverses specific dimensions of a tensor.
Given a tensor, and a int32/int64 tensor axis representing the set of dimensions of tensor to reverse. This operation reverses each dimension i for which there exists j st axis[j] == i.
Args: tensor: A Tensor. Must be one of the following types: uint8, int8, int16, int32, int64, float32, bool Up to 8-D.
axis: A Tensor. Must be one of the following types: int32, int64. with only 1 element which is the axis index. TODO: Add support for multiple elements.
Traits: AlwaysSpeculatableImplTrait
, QuantizableResult
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
, TflRuntimeVerifyOpInterface
Effects: MemoryEffects::Effect{}
Operands:
Operand | Keterangan |
---|---|
input | tensor of 32-bit float or 8-bit unsigned integer or 16-bit signless integer or 32-bit signless integer or 64-bit signless integer or QI16 type or QUI8 type or QI8 type or TFLite quint8 type or 1-bit signless integer values |
axis | tensor of 32-bit signless integer values |
Hasil:
Hasil | Keterangan |
---|---|
output | tensor of 32-bit float or 8-bit unsigned integer or 16-bit signless integer or 32-bit signless integer or 64-bit signless integer or QI16 type or QUI8 type or QI8 type or TFLite quint8 type or 1-bit signless integer values |
tfl.rfft2d
(TFL::RFFT2dOp)
2D real-valued fast Fourier transform.
Computes the 2-dimensional discrete Fourier transform of a real-valued signal over the inner-most 2 dimensions of input
.
Since the DFT of a real signal is Hermitian-symmetric, RFFT2D
only returns the fft_length / 2 + 1
unique components of the FFT for the inner-most dimension of output
: the zero-frequency term, followed by the fft_length / 2
positive-frequency ketentuan.
Along each axis RFFT2D
is computed on, if fft_length
is smaller than the corresponding dimension of input
, the dimension is cropped. If it is larger, the dimension is padded with zeros.
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
, TflRuntimeVerifyOpInterface
Effects: MemoryEffects::Effect{}
Operands:
Operand | Keterangan |
---|---|
input | tensor of 32-bit float values |
fft_length | tensor of 32-bit signless integer values |
Hasil:
Hasil | Keterangan |
---|---|
output | tensor of complex type with 32-bit float elements values |
tfl.right_shift
(TFL::RightShiftOp)
Right Shift operator
Elementwise computes the bitwise right-shift of lhs
by rhs
.
Traits: AlwaysSpeculatableImplTrait
, SameOperandsAndResultElementType
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
, TflRuntimeVerifyOpInterface
Effects: MemoryEffects::Effect{}
Operands:
Operand | Keterangan |
---|---|
lhs | tensor of 8-bit signless integer or 8-bit unsigned integer or 16-bit signless integer or 16-bit unsigned integer or 32-bit signless integer or 32-bit unsigned integer values |
rhs | tensor of 8-bit signless integer or 8-bit unsigned integer or 16-bit signless integer or 16-bit unsigned integer or 32-bit signless integer or 32-bit unsigned integer values |
Hasil:
Hasil | Keterangan |
---|---|
output | tensor of 8-bit signless integer or 8-bit unsigned integer or 16-bit signless integer or 16-bit unsigned integer or 32-bit signless integer or 32-bit unsigned integer values |
tfl.round
(TFL::RoundOp)
Round operator
Rounds the values of a tensor to the nearest integer, element-wise.
Traits: AlwaysSpeculatableImplTrait
, InferTensorType
, TF::SameOperandsAndResultTypeResolveRef
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
, TflRuntimeVerifyOpInterface
Effects: MemoryEffects::Effect{}
Operands:
Operand | Keterangan |
---|---|
x | tensor of 32-bit float values |
Hasil:
Hasil | Keterangan |
---|---|
y | tensor of 32-bit float values |
tfl.rsqrt
(TFL::RsqrtOp)
Reciprocal of square root operator
Computes element-wise reverse square root of input
Traits: AlwaysSpeculatableImplTrait
, QuantizableResult
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
, TflRuntimeVerifyOpInterface
Effects: MemoryEffects::Effect{}
Operands:
Operand | Keterangan |
---|---|
x | tensor of 32-bit float or QI8 type or QI16 type values |
Hasil:
Hasil | Keterangan |
---|---|
y | tensor of 32-bit float or QI8 type or QI16 type values |
tfl.scatter_nd
(TFL::ScatterNdOp)
_Scatter nd operator
Scatter updates
into a new tensor according to indices
Traits: AlwaysSpeculatableImplTrait
, QuantizableResult
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
, SameOperandsAndResultsScale
, TflRuntimeVerifyOpInterface
Effects: MemoryEffects::Effect{}
Operands:
Operand | Keterangan |
---|---|
indices | tensor of 32-bit signless integer values |
updates | tensor of 32-bit float or 8-bit signless integer or 64-bit signless integer or 32-bit signless integer or 8-bit unsigned integer or 1-bit signless integer values |
shape | 1D tensor of any type values |
Hasil:
Hasil | Keterangan |
---|---|
output | tensor of 32-bit float or 8-bit signless integer or 64-bit signless integer or 32-bit signless integer or 8-bit unsigned integer or 1-bit signless integer values |
tfl.segment_sum
(TFL::SegmentSumOp)
SegmentSum operator
Computes the sum along segments of a tensor.
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
, TflRuntimeVerifyOpInterface
Effects: MemoryEffects::Effect{}
Operands:
Operand | Keterangan |
---|---|
input | tensor of 32-bit float or 32-bit signless integer values |
segment_ids | tensor of 32-bit signless integer values |
Hasil:
Hasil | Keterangan |
---|---|
output | tensor of 32-bit float or 32-bit signless integer values |
tfl.select
(TFL::SelectOp)
Select operator
Select values of 'x' if the corresponding value of 'condition' is true or the value of 'y' if false. There are valid condition input sizes:
- Either the same shape (in which case the select is elementwise), or
- condition must be Rank 1 and match over the first dimension.
Traits: AlwaysSpeculatableImplTrait
, QuantizableResult
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
, SameOperandsAndResultsScale
, TflRuntimeVerifyOpInterface
Effects: MemoryEffects::Effect{}
Operands:
Operand | Keterangan |
---|---|
condition | tensor of 1-bit signless integer values |
x | tensor of 32-bit float or 1-bit signless integer or 8-bit signless integer or 16-bit signless integer or 32-bit signless integer or 64-bit signless integer or 32-bit unsigned integer or QI8 type or QUI8 type or QI16 type or TFLite quint8 type values |
y | tensor of 32-bit float or 1-bit signless integer or 8-bit signless integer or 16-bit signless integer or 32-bit signless integer or 64-bit signless integer or 32-bit unsigned integer or QI8 type or QUI8 type or QI16 type or TFLite quint8 type values |
Hasil:
Hasil | Keterangan |
---|---|
output | tensor of 32-bit float or 1-bit signless integer or 8-bit signless integer or 16-bit signless integer or 32-bit signless integer or 64-bit signless integer or 32-bit unsigned integer or QI8 type or QUI8 type or QI16 type or TFLite quint8 type values |
tfl.select_v2
(TFL::SelectV2Op)
SelectV2 operator
Select values of 'x' if the corresponding value of 'condition' is true or the value of 'y' if false. There are valid condition input sizes:
- Either the same shape (in which case the select is elementwise), or
- Broadcastable shapes between 'condition', 'x' and 'y'.
Traits: ::mlir::OpTrait::TFLRuntimeOpTrait
, AlwaysSpeculatableImplTrait
, QuantizableResult
, ResultsBroadcastableShape
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
, SameOperandsAndResultsScale
, TflRuntimeVerifyOpInterface
Effects: MemoryEffects::Effect{}
Operands:
Operand | Keterangan |
---|---|
condition | tensor of 1-bit signless integer values |
x | tensor of 32-bit float or 1-bit signless integer or 8-bit signless integer or 16-bit signless integer or 32-bit signless integer or 64-bit signless integer or 32-bit unsigned integer or QI8 type or QUI8 type or QI16 type or TFLite quint8 type values |
y | tensor of 32-bit float or 1-bit signless integer or 8-bit signless integer or 16-bit signless integer or 32-bit signless integer or 64-bit signless integer or 32-bit unsigned integer or QI8 type or QUI8 type or QI16 type or TFLite quint8 type values |
Hasil:
Hasil | Keterangan |
---|---|
output | tensor of 32-bit float or 1-bit signless integer or 8-bit signless integer or 16-bit signless integer or 32-bit signless integer or 64-bit signless integer or 32-bit unsigned integer or QI8 type or QUI8 type or QI16 type or TFLite quint8 type values |
tfl.shape
(TFL::ShapeOp)
Shape operator
Returns the shape of a tensor.
Traits: AlwaysSpeculatableImplTrait
, QuantizableResult
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
, TflRuntimeVerifyOpInterface
Effects: MemoryEffects::Effect{}
Attributes:
Atribut | MLIR Type | Keterangan |
---|---|---|
out_type | ::mlir::Attribute | atribut turunan |
Operands:
Operand | Keterangan |
---|---|
input | tensor of any type values |
Hasil:
Hasil | Keterangan |
---|---|
output | tensor of 32-bit signless integer or 64-bit signless integer values |
tfl.sign
(TFL::SignOp)
Sign operation
Returns NaN if x is NaN, 0 if x is 0, -1 if x < 0 and 1 if x > 0.
Traits: AlwaysSpeculatableImplTrait
, SameOperandsAndResultElementType
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
, TflRuntimeVerifyOpInterface
Effects: MemoryEffects::Effect{}
Operands:
Operand | Keterangan |
---|---|
x | tensor of 32-bit float or 64-bit float or 32-bit signless integer values |
Hasil:
Hasil | Keterangan |
---|---|
output | tensor of 32-bit float or 64-bit float or 32-bit signless integer values |
tfl.sin
(TFL::SinOp)
Sine operator
Computes element-wise Sine of input
Traits: AlwaysSpeculatableImplTrait
, InferTensorType
, TF::SameOperandsAndResultTypeResolveRef
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
, TflRuntimeVerifyOpInterface
Effects: MemoryEffects::Effect{}
Operands:
Operand | Keterangan |
---|---|
x | tensor of 32-bit float values |
Hasil:
Hasil | Keterangan |
---|---|
y | tensor of 32-bit float values |
tfl.slice
(TFL::SliceOp)
Return a slice from 'input'.
The output tensor is a tensor with dimensions described by 'size' whose values are extracted from 'input' starting at the offsets in 'begin'.
begin
is zero-based; size
is one-based. If size[i] is -1, all remaining elements in dimension i are included in the slice. In other words, this is equivalent to setting: size[i] = input.dim_size(i) - begin[i]
Requirements : 0 <= begin[i] <= begin[i] + size[i] <= Di for i in [0, n)
Traits: AlwaysSpeculatableImplTrait
, QuantizableResult
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
, SameOperandsAndResultsScale
, TflRuntimeVerifyOpInterface
Effects: MemoryEffects::Effect{}
Operands:
Operand | Keterangan |
---|---|
input | tensor of 32-bit float or 32-bit signless integer or 64-bit signless integer or 8-bit signless integer or 8-bit unsigned integer or 32-bit unsigned integer or 1-bit signless integer or TFLite string type or QI8 type or QUI8 type or TFLite quint8 type or QI16 type values |
begin | tensor of 32/64-bit signless integer values |
size | tensor of 32/64-bit signless integer values |
Hasil:
Hasil | Keterangan |
---|---|
output | tensor of 32-bit float or 32-bit signless integer or 64-bit signless integer or 8-bit signless integer or 8-bit unsigned integer or 32-bit unsigned integer or 1-bit signless integer or TFLite string type or QI8 type or QUI8 type or TFLite quint8 type or QI16 type values |
tfl.softmax
(TFL::SoftmaxOp)
Softmax operator
Computes element-wise softmax activations with the following formula
exp(input) / tf.reduce_sum(exp(input * beta), dim)
Traits: AlwaysSpeculatableImplTrait
, QuantizableResult
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, FixedOutputRangeInterface
, NoMemoryEffect (MemoryEffectOpInterface)
, TflArithmeticCountOpInterface
, TflRuntimeVerifyOpInterface
Effects: MemoryEffects::Effect{}
Attributes:
Atribut | MLIR Type | Keterangan |
---|---|---|
beta | ::mlir::FloatAttr | 32-bit float attribute |
Operands:
Operand | Keterangan |
---|---|
input | tensor of 32-bit float or QI8 type or QUI8 type or TFLite quint8 type or QI16 type values |
Hasil:
Hasil | Keterangan |
---|---|
output | tensor of 32-bit float or QI8 type or QUI8 type or TFLite quint8 type or QI16 type values |
tfl.space_to_batch_nd
(TFL::SpaceToBatchNdOp)
SpaceToBatchNd operator
This operation reshapes space dimensions into the "batch" dimension 0
Traits: AlwaysSpeculatableImplTrait
, QuantizableResult
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
, SameOperandsAndResultsScale
, TflRuntimeVerifyOpInterface
Effects: MemoryEffects::Effect{}
Operands:
Operand | Keterangan |
---|---|
input | tensor of 32-bit float or 32-bit signless integer or 64-bit signless integer or QI8 type or QUI8 type or TFLite quint8 type or QI16 type values |
block_shape | tensor of 32-bit signless integer values |
paddings | tensor of 32-bit signless integer values |
Hasil:
Hasil | Keterangan |
---|---|
output | tensor of 32-bit float or 32-bit signless integer or 64-bit signless integer or QI8 type or QUI8 type or TFLite quint8 type or QI16 type values |
tfl.space_to_depth
(TFL::SpaceToDepthOp)
SpaceToDepth operator
Rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of the input tensor where values from the height
and width
dimensions are moved to the depth
dimension. block_size
indicates the input block size.
Traits: AlwaysSpeculatableImplTrait
, QuantizableResult
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
, SameOperandsAndResultsScale
, TflRuntimeVerifyOpInterface
Effects: MemoryEffects::Effect{}
Attributes:
Atribut | MLIR Type | Keterangan |
---|---|---|
block_size | ::mlir::IntegerAttr | 32-bit signless integer attribute whose value is positive |
Operands:
Operand | Keterangan |
---|---|
input | tensor of 32-bit float or 32-bit signless integer or 64-bit signless integer or QI8 type or QUI8 type or TFLite quint8 type values |
Hasil:
Hasil | Keterangan |
---|---|
output | tensor of 32-bit float or 32-bit signless integer or 64-bit signless integer or QI8 type or QUI8 type or TFLite quint8 type values |
tfl.sparse_to_dense
(TFL::SparseToDenseOp)
Converts a sparse representation into a dense tensor.
Builds an array dense
with shape output_shape
such that
# If sparse_indices is scalar
dense[i] = (i == sparse_indices ? sparse_values : default_value)
# If sparse_indices is a vector, then for each i
dense[sparse_indices[i]] = sparse_values[i]
# If sparse_indices is an n by d matrix, then for each i in [0, n)
dense[sparse_indices[i][0], ..., sparse_indices[i][d-1]] = sparse_values[i]
All other values in dense
are set to default_value
. If sparse_values
is a scalar, all sparse indices are set to this single value.
Indices should be sorted in lexicographic order, and indices must not contain any repeats. If validate_indices
is true, these properties are checked during execution.
Traits: AlwaysSpeculatableImplTrait
, QuantizableResult
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
, TflRuntimeVerifyOpInterface
Effects: MemoryEffects::Effect{}
Operands:
Operand | Keterangan |
---|---|
sparse_indices | tensor of 32/64-bit signless integer values |
output_shape | tensor of 32/64-bit signless integer values |
sparse_values | tensor of 32-bit signless integer or 64-bit signless integer or 8-bit signless integer or QI8 type or 8-bit unsigned integer or QUI8 type or TFLite quint8 type or 32-bit float values |
default_value | tensor of 32-bit signless integer or 64-bit signless integer or 8-bit signless integer or QI8 type or 8-bit unsigned integer or QUI8 type or TFLite quint8 type or 32-bit float values |
Hasil:
Hasil | Keterangan |
---|---|
dense | tensor of 32-bit signless integer or 64-bit signless integer or 8-bit signless integer or QI8 type or 8-bit unsigned integer or QUI8 type or TFLite quint8 type or 32-bit float values |
tfl.split
(TFL::SplitOp)
Splits a tensor into num_split
tensors along one dimension.
Splits the value
tensor along split_dim
into a number of sub-tensors with same shape as the original one, except for split_dim
. Same as tf.Split.
Traits: AlwaysSpeculatableImplTrait
, QuantizableResult
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
, SameOperandsAndResultsScale
, TflRuntimeVerifyOpInterface
Effects: MemoryEffects::Effect{}
Attributes:
Atribut | MLIR Type | Keterangan |
---|---|---|
num_splits | ::mlir::IntegerAttr | 32-bit signless integer attribute whose value is positive |
Operands:
Operand | Keterangan |
---|---|
split_dim | tensor of 32-bit signless integer values |
value | tensor of 32-bit float or 16-bit signless integer or 32-bit signless integer or 8-bit signless integer or 8-bit unsigned integer or QI8 type or QUI8 type or QI16 type values |
Hasil:
Hasil | Keterangan |
---|---|
outputs | variadic of tensor of any type values |
tfl.split_v
(TFL::SplitVOp)
Splits a tensor into num_split
tensors along one dimension.
Splits the value
tensor along split_dim
into a number of sub-tensors with same shape as the original one, except for split_dim
. The grouping of the resultant sub-tensors is decided by size-splits
. Same as tf.SplitV.
Traits: AlwaysSpeculatableImplTrait
, QuantizableResult
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
, SameOperandsAndResultsScale
, TflRuntimeVerifyOpInterface
Effects: MemoryEffects::Effect{}
Attributes:
Atribut | MLIR Type | Keterangan |
---|---|---|
num_splits | ::mlir::IntegerAttr | 32-bit signless integer attribute whose value is positive |
Operands:
Operand | Keterangan |
---|---|
value | tensor of 32-bit float or 16-bit signless integer or 32-bit signless integer or 64-bit signless integer or 8-bit signless integer or 8-bit unsigned integer or QI8 type or QUI8 type or QI16 type values |
size_splits | 1D tensor of 32-bit signless integer values |
split_dim | 0D tensor of 32-bit signless integer values |
Hasil:
Hasil | Keterangan |
---|---|
outputs | variadic of tensor of any type values |
tfl.sqrt
(TFL::SqrtOp)
Square root operator
Computes element-wise Square root of input
Traits: AlwaysSpeculatableImplTrait
, InferTensorType
, TF::SameOperandsAndResultTypeResolveRef
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
, TflRuntimeVerifyOpInterface
Effects: MemoryEffects::Effect{}
Operands:
Operand | Keterangan |
---|---|
x | tensor of 32-bit float values |
Hasil:
Hasil | Keterangan |
---|---|
y | tensor of 32-bit float values |
tfl.square
(TFL::SquareOp)
Square operator
Computes element-wise Square of input
Traits: AlwaysSpeculatableImplTrait
, InferTensorType
, TF::SameOperandsAndResultTypeResolveRef
Interfaces: ConditionallySpeculatable
, InferShapedTypeOpInterface
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
, TflRuntimeVerifyOpInterface
Effects: MemoryEffects::Effect{}
Operands:
Operand | Keterangan |
---|---|
x | tensor of 32-bit float values |
Hasil:
Hasil | Keterangan |
---|---|
y | tensor of 32-bit float values |
tfl.squared_difference
(TFL::SquaredDifferenceOp)
Squared difference operator
Element-wise squared difference operation.
Traits: ::mlir::OpTrait::TFLRuntimeOpTrait
, AlwaysSpeculatableImplTrait
, QuantizableResult
, ResultsBroadcastableShape
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
, TflRuntimeVerifyOpInterface
Effects: MemoryEffects::Effect{}
Operands:
Operand | Keterangan |
---|---|
lhs | tensor of 32-bit float or 32-bit signless integer or QI8 type values |
rhs | tensor of 32-bit float or 32-bit signless integer or QI8 type values |
Hasil:
Hasil | Keterangan |
---|---|
output | tensor of 32-bit float or 32-bit signless integer or QI8 type values |
tfl.squeeze
(TFL::SqueezeOp)
Removes dimensions of size 1 from the shape of a tensor.
Given a tensor input
, this operation returns a tensor of the same type with all dimensions of size 1 removed. If you don't want to remove all size 1 dimensions, you can remove specific size 1 dimensions by specifying squeeze_dims
.
Misalnya:
# 't' is a tensor of shape [1, 2, 1, 3, 1, 1]
shape(squeeze(t)) ==> [2, 3]
Or, to remove specific size 1 dimensions:
# 't' is a tensor of shape [1, 2, 1, 3, 1, 1]
shape(squeeze(t, [2, 4])) ==> [1, 2, 3, 1]
Traits: AlwaysSpeculatableImplTrait
, QuantizableResult
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
, SameOperandsAndResultsScale
, TflRuntimeVerifyOpInterface
Effects: MemoryEffects::Effect{}
Attributes:
Atribut | MLIR Type | Keterangan |
---|---|---|
squeeze_dims | ::mlir::ArrayAttr | 64-bit integer array attribute whose size is at most 8 |
Operands:
Operand | Keterangan |
---|---|
input | tensor of any type values |
Hasil:
Hasil | Keterangan |
---|---|
output | tensor of any type values |
tfl.strided_slice
(TFL::StridedSliceOp)
StridedSlice Op
Return a strided slice from input
.
Traits: AlwaysSpeculatableImplTrait
, QuantizableResult
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
, SameOperandsAndResultsScale
, TflRuntimeVerifyOpInterface
Effects: MemoryEffects::Effect{}
Attributes:
Atribut | MLIR Type | Keterangan |
---|---|---|
begin_mask | ::mlir::IntegerAttr | 32-bit signless integer attribute |
end_mask | ::mlir::IntegerAttr | 32-bit signless integer attribute |
ellipsis_mask | ::mlir::IntegerAttr | 32-bit signless integer attribute |
new_axis_mask | ::mlir::IntegerAttr | 32-bit signless integer attribute |
shrink_axis_mask | ::mlir::IntegerAttr | 32-bit signless integer attribute |
offset | ::mlir::BoolAttr | bool attribute |
Operands:
Operand | Keterangan |
---|---|
input | tensor of 32-bit float or 32-bit signless integer or 64-bit signless integer or 8-bit signless integer or 8-bit unsigned integer or 32-bit unsigned integer or QI8 type or QUI8 type or 1-bit signless integer or 16-bit signless integer or QI16 type or TFLite quint8 type or TFLite string type values |
begin | tensor of 32-bit signless integer values |
end | tensor of 32-bit signless integer values |
strides | tensor of 32-bit signless integer values |
Hasil:
Hasil | Keterangan |
---|---|
output | tensor of 32-bit float or 32-bit signless integer or 64-bit signless integer or 8-bit signless integer or 8-bit unsigned integer or 32-bit unsigned integer or QI8 type or QUI8 type or 1-bit signless integer or 16-bit signless integer or QI16 type or TFLite quint8 type or TFLite string type values |
tfl.sub
(TFL::SubOp)
Subtraction operator
Element-wise subtraction operation.
Traits: ::mlir::OpTrait::TFLRuntimeOpTrait
, AlwaysSpeculatableImplTrait
, QuantizableResult
, ResultsBroadcastableShape
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
, TflArithmeticCountOpInterface
, TflRuntimeVerifyOpInterface
Effects: MemoryEffects::Effect{}
Attributes:
Atribut | MLIR Type | Keterangan |
---|---|---|
fused_activation_function | ::mlir::StringAttr | string attribute whose value is NONE, or RELU, or RELU_N1_TO_1, or RELU6, or TANH, or SIGN_BIT |
Operands:
Operand | Keterangan |
---|---|
lhs | tensor of 32-bit float or 32-bit signless integer or 64-bit signless integer or QI8 type or QUI8 type or QI16 type values |
rhs | tensor of 32-bit float or 32-bit signless integer or 64-bit signless integer or QI8 type or QUI8 type or QI16 type values |
Hasil:
Hasil | Keterangan |
---|---|
output | tensor of 32-bit float or 32-bit signless integer or 64-bit signless integer or QI8 type or QUI8 type or QI16 type values |
tfl.sum
(TFL::SumOp)
Sum operator
Computes the sum reduction along the specified axes
Traits: AlwaysSpeculatableImplTrait
, QuantizableResult
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
, TflRuntimeVerifyOpInterface
Effects: MemoryEffects::Effect{}
Attributes:
Atribut | MLIR Type | Keterangan |
---|---|---|
keep_dims | ::mlir::BoolAttr | bool attribute |
Operands:
Operand | Keterangan |
---|---|
input | tensor of 32-bit float or 32-bit signless integer or 64-bit signless integer or QI8 type or QUI8 type or TFLite quint8 type or QI16 type values |
axes | tensor of 32-bit signless integer values |
Hasil:
Hasil | Keterangan |
---|---|
output | tensor of 32-bit float or 32-bit signless integer or 64-bit signless integer or QI8 type or QUI8 type or TFLite quint8 type or QI16 type values |
tfl.svdf
(TFL::SVDFOp)
Single value decomposition filter operator
The SVDF op is a decomposition of a densely connected op into low rank filters. For details: https://research.google.com/pubs/pub43813.html https://arxiv.org/abs/1812.02802
Traits: QuantizableResult
, quant::AccumulatorUniformScale<3, 2, 4>
Interfaces: DynamicRangeQuantizedOpInterface
, TFL_StatefulOp
, TflRuntimeVerifyOpInterface
Attributes:
Atribut | MLIR Type | Keterangan |
---|---|---|
rank | ::mlir::IntegerAttr | 32-bit signless integer attribute whose value is positive |
fused_activation_function | ::mlir::StringAttr | string attribute whose value is NONE, or RELU, or RELU_N1_TO_1, or RELU6, or TANH, or SIGN_BIT |
asymmetric_quantize_inputs | ::mlir::BoolAttr | bool attribute |
Operands:
Operand | Keterangan |
---|---|
input | tensor of 32-bit float or QI8 type values |
feature_weights | tensor of 32-bit float or QI8 type or QUI8 type values |
time_weights | tensor of 32-bit float or QI16 type values |
input_gate_bias | tensor of any type values or none type |
activation_state | stateful tensor |
Hasil:
Hasil | Keterangan |
---|---|
output | tensor of 32-bit float or QI8 type values |
tfl.tanh
(TFL::TanhOp)
Hyperbolic tangent operator
Computes element-wise Hyperbolic tangent of input
Traits: AlwaysSpeculatableImplTrait
, QuantizableResult
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, FixedOutputRangeInterface
, NoMemoryEffect (MemoryEffectOpInterface)
, TflArithmeticCountOpInterface
, TflRuntimeVerifyOpInterface
Effects: MemoryEffects::Effect{}
Operands:
Operand | Keterangan |
---|---|
input | tensor of 32-bit float or QI8 type or QUI8 type or QI16 type or TFLite quint8 type values |
Hasil:
Hasil | Keterangan |
---|---|
output | tensor of 32-bit float or QI8 type or QUI8 type or QI16 type or TFLite quint8 type values |
tfl.tile
(TFL::TileOp)
Tile operator.
Constructs a tensor by tiling a given tensor.
This operation creates a new tensor by replicating input multiples times. The output tensor's i'th dimension has input.dims(i) * multiples[i] elements, and the values of input are replicated multiples[i] times along the 'i'th dimension. For example, tiling [abcd] by [2] produces [abcdabcd].
Traits: AlwaysSpeculatableImplTrait
, QuantizableResult
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
, SameOperandsAndResultsScale
, TflRuntimeVerifyOpInterface
Effects: MemoryEffects::Effect{}
Operands:
Operand | Keterangan |
---|---|
input | tensor of 32-bit float or 1-bit signless integer or 32-bit signless integer or 64-bit signless integer or 8-bit unsigned integer or QI8 type or QUI8 type or TFLite string type values |
multiples | tensor of 32/64-bit signless integer values |
Hasil:
Hasil | Keterangan |
---|---|
output | tensor of 32-bit float or 1-bit signless integer or 32-bit signless integer or 64-bit signless integer or 8-bit unsigned integer or QI8 type or QUI8 type or TFLite string type values |
tfl.topk_v2
(TFL::TopKV2Op)
TopK operator
Returns the top k
largest element along each last dimensional slice of input
and the indices of values within the last dimension of the input tensor.
Results are always sorted in the descending order.
Traits: AlwaysSpeculatableImplTrait
, QuantizableResult
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
, SameOperandsAndResultsScale
, TflRuntimeVerifyOpInterface
Effects: MemoryEffects::Effect{}
Operands:
Operand | Keterangan |
---|---|
input | tensor of 32-bit float or 8-bit signless integer or 16-bit signless integer or 32-bit signless integer or 64-bit signless integer or 8-bit unsigned integer or QI8 type or QUI8 type values |
k | tensor of 16-bit signless integer or 32-bit signless integer values |
Hasil:
Hasil | Keterangan |
---|---|
values | tensor of 32-bit float or 8-bit signless integer or 16-bit signless integer or 32-bit signless integer or 64-bit signless integer or 8-bit unsigned integer or QI8 type or QUI8 type values |
indices | tensor of 16-bit signless integer or 32-bit signless integer values |
tfl.transpose
(TFL::TransposeOp)
Transpose operator
Returns the Transpose of x
Traits: AlwaysSpeculatableImplTrait
, QuantizableResult
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
, SameOperandsAndResultsScale
, TflRuntimeVerifyOpInterface
Effects: MemoryEffects::Effect{}
Operands:
Operand | Keterangan |
---|---|
input | tensor of 32-bit signless integer or 32-bit float or 8-bit signless integer or 8-bit unsigned integer or QI8 type or QUI8 type or TFLite quint8 type or 1-bit signless integer or 64-bit signless integer or QI16 type values |
perm | tensor of 32-bit signless integer values |
Hasil:
Hasil | Keterangan |
---|---|
output | tensor of 32-bit signless integer or 32-bit float or 8-bit signless integer or 8-bit unsigned integer or QI8 type or QUI8 type or TFLite quint8 type or 1-bit signless integer or 64-bit signless integer or QI16 type values |
tfl.transpose_conv
(TFL::TransposeConvOp)
Transpose convolution operator
Performs transpose convolution operation on input.
Traits: AlwaysSpeculatableImplTrait
, QuantizableResult
, quant::AccumulatorUniformScale<3, 1, 2>
, quant::AffineOpCoefficient<0, 1>
Interfaces: AffineQuantizedOpInterface
, ConditionallySpeculatable
, DynamicRangeQuantizedOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
, TFL_SparseOp
, TflArithmeticCountOpInterface
, TflRuntimeVerifyOpInterface
Effects: MemoryEffects::Effect{}
Attributes:
Atribut | MLIR Type | Keterangan |
---|---|---|
padding | ::mlir::StringAttr | string attribute whose value is SAME, or VALID |
stride_h | ::mlir::IntegerAttr | 32-bit signless integer attribute whose value is positive |
stride_w | ::mlir::IntegerAttr | 32-bit signless integer attribute whose value is positive |
fused_activation_function | ::mlir::StringAttr | string attribute whose value is NONE, or RELU, or RELU_N1_TO_1, or RELU6, or TANH, or SIGN_BIT |
Operands:
Operand | Keterangan |
---|---|
output_shape | tensor of 32-bit signless integer values |
weights | tensor of 32-bit float or QI8 type or QUI8 type or QI16 type values |
input | tensor of 32-bit float or QI8 type or QUI8 type or QI16 type values |
bias | tensor of any type values or none type |
Hasil:
Hasil | Keterangan |
---|---|
output | tensor of 32-bit float or QI8 type or QUI8 type or QI16 type values |
tfl.unidirectional_sequence_lstm
(TFL::UnidirectionalSequenceLSTMOp)
Unidirectional sequence lstm operator
A recurrent neural network specified by an LSTM cell. This Op supports unrolling the input along the time or batch dimensions, and implements the following operation for each element in the sequence s = 1...sequence_length: outputs[s] = state = activation(LSTMOp(inputs[s]))
where LSTMOp is LSTM TF Lite Op and the “activation” is the function passed as the “fused_activation_function” argument (if not “NONE”).
Traits: QuantizableResult
Interfaces: DynamicRangeQuantizedOpInterface
, InferTypeOpInterface
, TFL_StatefulOp
, TflRuntimeVerifyOpInterface
Attributes:
Atribut | MLIR Type | Keterangan |
---|---|---|
fused_activation_function | ::mlir::StringAttr | string attribute whose value is NONE, or RELU, or RELU_N1_TO_1, or RELU6, or TANH, or SIGN_BIT |
cell_clip | ::mlir::FloatAttr | 32-bit float attribute whose value is non-negative |
proj_clip | ::mlir::FloatAttr | 32-bit float attribute whose value is non-negative |
time_major | ::mlir::BoolAttr | bool attribute |
asymmetric_quantize_inputs | ::mlir::BoolAttr | bool attribute |
diagonal_recurrent_tensors | ::mlir::BoolAttr | bool attribute |
input_to_input_intermediate | ::mlir::TypeAttr | any type attribute |
input_to_forget_intermediate | ::mlir::TypeAttr | any type attribute |
input_to_cell_intermediate | ::mlir::TypeAttr | any type attribute |
input_to_output_intermediate | ::mlir::TypeAttr | any type attribute |
effective_hidden_scale_intermediate | ::mlir::TypeAttr | any type attribute |
Operands:
Operand | Keterangan |
---|---|
input | tensor of 32-bit float values |
input_to_input_weights | tensor of any type values or none type |
input_to_forget_weights | tensor of 32-bit float or QI8 type values |
input_to_cell_weights | tensor of 32-bit float or QI8 type values |
input_to_output_weights | tensor of 32-bit float or QI8 type values |
recurrent_to_input_weights | tensor of any type values or none type |
recurrent_to_forget_weights | tensor of 32-bit float or QI8 type values |
recurrent_to_cell_weights | tensor of 32-bit float or QI8 type values |
recurrent_to_output_weights | tensor of 32-bit float or QI8 type values |
cell_to_input_weights | tensor of any type values or none type |
cell_to_forget_weights | tensor of any type values or none type |
cell_to_output_weights | tensor of any type values or none type |
input_gate_bias | tensor of any type values or none type |
forget_gate_bias | tensor of 32-bit float values |
cell_bias | tensor of 32-bit float values |
output_gate_bias | tensor of 32-bit float values |
projection_weights | tensor of any type values or none type |
projection_bias | tensor of any type values or none type |
input_activation_state | stateful tensor |
input_cell_state | stateful tensor |
input_layer_norm_coefficients | tensor of any type values or none type |
forget_layer_norm_coefficients | tensor of any type values or none type |
cell_layer_norm_coefficients | tensor of any type values or none type |
output_layer_norm_coefficients | tensor of any type values or none type |
Hasil:
Hasil | Keterangan |
---|---|
output | tensor of 32-bit float or QI8 type values |
tfl.unidirectional_sequence_rnn
(TFL::UnidirectionalSequenceRNNOp)
Unidirectional sequence rnn operator
A recurrent neural network specified by an RNN cell. This Op takes in input in a format {batch_size, seq_len, input_size} or {seq_len, batch_size, input_size} if it's time-majored.
It implements the following operation for each element in the sequence s = 1...sequence_length: outputs[s] = state = activation(RNNOp(inputs[s]))
where RNNOp is RNNOp TF Lite Op and the “activation” is the function passed as the “fused_activation_function” argument (if not “NONE”).
Traits: QuantizableResult
Interfaces: DynamicRangeQuantizedOpInterface
, TFL_StatefulOp
, TflRuntimeVerifyOpInterface
Attributes:
Atribut | MLIR Type | Keterangan |
---|---|---|
time_major | ::mlir::BoolAttr | bool attribute |
fused_activation_function | ::mlir::StringAttr | string attribute whose value is NONE, or RELU, or RELU_N1_TO_1, or RELU6, or TANH, or SIGN_BIT |
asymmetric_quantize_inputs | ::mlir::BoolAttr | bool attribute |
Operands:
Operand | Keterangan |
---|---|
input | tensor of 32-bit float values |
input_to_input_weights | tensor of 32-bit float or QI8 type values |
recurrent_to_input_weights | tensor of 32-bit float or QI8 type values |
input_gate_bias | tensor of 32-bit float values |
hidden_state | stateful tensor |
Hasil:
Hasil | Keterangan |
---|---|
output | tensor of 32-bit float values |
tfl.unique
(TFL::UniqueOp)
Unique Op.
This operation returns a tensor output
containing all of the unique elements of input
sorted in the same order that they occur in input
. This operation also returns a tensor idx
the same size as x
that contains the index of each value of input
in the unique output output
. Dengan kata lain:
Traits: AlwaysSpeculatableImplTrait
, QuantizableResult
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
, TflRuntimeVerifyOpInterface
Effects: MemoryEffects::Effect{}
Attributes:
Atribut | MLIR Type | Keterangan |
---|---|---|
idx_out_type | ::mlir::Attribute | atribut turunan |
Operands:
Operand | Keterangan |
---|---|
input | tensor of 8-bit signless integer or QI8 type or 8-bit unsigned integer or QUI8 type or 16-bit signless integer or QI16 type or 32-bit signless integer or 64-bit signless integer or 32-bit float values |
Hasil:
Hasil | Keterangan |
---|---|
output | tensor of 8-bit signless integer or QI8 type or 8-bit unsigned integer or QUI8 type or 16-bit signless integer or QI16 type or 32-bit signless integer or 64-bit signless integer or 32-bit float values |
idx | tensor of 32/64-bit signless integer values |
tfl.unpack
(TFL::UnpackOp)
Unpacks a tensor along a dimension into multiple tensors
Unpacks a given dimension of a rank- R
tensor into num
rank- (R-1)
tensors.
Unpacks num
tensors from value
by chipping it along the axis
dimension. For example, given a tensor of shape (A, B, C, D)
;
If axis == 0
then the i'th tensor in output
is the slice value[i, :, :, :]
and each tensor in output
will have shape (B, C, D)
. (Note that the dimension unpacked along is gone, unlike split
).
If axis == 1
then the i'th tensor in output
is the slice value[:, i, :, :]
and each tensor in output
will have shape (A, C, D)
. Dll.
This is the opposite of pack
.
Traits: AlwaysSpeculatableImplTrait
, QuantizableResult
, SameOperandsAndResultElementType
Interfaces: ConditionallySpeculatable
, InferTypeOpInterface
, NoMemoryEffect (MemoryEffectOpInterface)
, SameOperandsAndResultsScale
, TflRuntimeVerifyOpInterface
Effects: MemoryEffects::Effect{}
Attributes:
Atribut | MLIR Type | Keterangan |
---|---|---|
num | ::mlir::IntegerAttr | 32-bit signless integer attribute whose value is non-negative |
axis | ::mlir::IntegerAttr | 32-bit signless integer attribute |
Operands:
Operand | Keterangan |
---|---|
input | tensor of 32-bit float or 1-bit signless integer or 8-bit signless integer or 8-bit unsigned integer or 32-bit signless integer or QI8 type or QUI8 type or 16-bit signless integer or QI16 type values |
Hasil:
Hasil | Keterangan |
---|---|
outputs | variadic of tensor of any type values |
tfl.unsorted_segment_max
(TFL::UnsortedSegmentMaxOp)
UnsortedSegmentMax operator
Computes the maximum value along segments of a tensor such that output[i] = max(data[j....]) where segment_ids[j...] = i if the maximum is empty for a given segment ID i, it outputs the smallest possible value for the specific numeric type, output[i] = numeric_limits::lowest(). Note the values of segment_ids are always validated to be less than num_segments and an error is thrown for out-of-bound indices.
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
, TflRuntimeVerifyOpInterface
Effects: MemoryEffects::Effect{}
Operands:
Operand | Keterangan |
---|---|
input | tensor of 32-bit float or 32-bit signless integer values |
segment_ids | tensor of 32-bit signless integer values |
num_segments | tensor of 32-bit signless integer values |
Hasil:
Hasil | Keterangan |
---|---|
output | tensor of 32-bit float or 32-bit signless integer values |
tfl.unsorted_segment_min
(TFL::UnsortedSegmentMinOp)
UnsortedSegmentMin operator
Computes the minimum value along segments of a tensor such that output[i] = min(data[j....]) where segment_ids[j...] = i if the minimum is empty for a given segment ID i, it outputs the largest possible value for the specific numeric type, output[i] = numeric_limits::max(). Note the values of segment_ids are always validated to be less than num_segments and an error is thrown for out-of-bound indices.
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
, TflRuntimeVerifyOpInterface
Effects: MemoryEffects::Effect{}
Operands:
Operand | Keterangan |
---|---|
input | tensor of 32-bit float or 32-bit signless integer values |
segment_ids | tensor of 32-bit signless integer values |
num_segments | tensor of 32-bit signless integer values |
Hasil:
Hasil | Keterangan |
---|---|
output | tensor of 32-bit float or 32-bit signless integer values |
tfl.unsorted_segment_prod
(TFL::UnsortedSegmentProdOp)
UnsortedSegmentProd operator
Computes the product along segments of a tensor.
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
, TflRuntimeVerifyOpInterface
Effects: MemoryEffects::Effect{}
Operands:
Operand | Keterangan |
---|---|
input | tensor of 32-bit float or 32-bit signless integer values |
segment_ids | tensor of 32-bit signless integer values |
num_segments | tensor of 32-bit signless integer values |
Hasil:
Hasil | Keterangan |
---|---|
output | tensor of 32-bit float or 32-bit signless integer values |
tfl.unsorted_segment_sum
(TFL::UnsortedSegmentSumOp)
UnsortedSegmentSum operator
From a tensor segmentation, computes the output
resulting from summing together elements mapped to the same segment_id. Ie output[i]
is equal to the tensor sum of all elements from the input tensor mapped to segment_id i
. If no tensors are mapped to a particular included segment_id, the output at that indice will be a zero tensor with the appropriate shape. Note the values of segment_ids are always validated to be less than num_segments and an error is thrown for out-of-bound indices
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
, TflRuntimeVerifyOpInterface
Effects: MemoryEffects::Effect{}
Operands:
Operand | Keterangan |
---|---|
input | tensor of 32-bit float or 32-bit signless integer values |
segment_ids | tensor of 32-bit signless integer values |
num_segments | tensor of 32-bit signless integer values |
Hasil:
Hasil | Keterangan |
---|---|
output | tensor of 32-bit float or 32-bit signless integer values |
tfl.var_handle
(TFL::VarHandleOp)
Returns a handle to a variable resource from its name.
Returns a handle for a variable resource from its name. container: the container this variable is placed in. shared_name: the name by which this variable is referred to.
Interfaces: TflRuntimeVerifyOpInterface
Attributes:
Atribut | MLIR Type | Keterangan |
---|---|---|
container | ::mlir::StringAttr | string attribute |
shared_name | ::mlir::StringAttr | string attribute |
Hasil:
Hasil | Keterangan |
---|---|
resource_handle | tensor of resource values |
tfl.where
(TFL::WhereOp)
Returns locations of nonzero / true values in a tensor.
This operation returns the coordinates of true elements in condition
. The coordinates are returned in a 2-D tensor where the first dimension (rows) represents the number of true elements, and the second dimension (columns) represents the coordinates of the true elements. Keep in mind, the shape of the output tensor can vary depending on how many true values there are in condition
. Indices are output in row-major order.
Traits: AlwaysSpeculatableImplTrait
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
, TflRuntimeVerifyOpInterface
Effects: MemoryEffects::Effect{}
Operands:
Operand | Keterangan |
---|---|
condition | tensor of 1-bit signless integer or 32-bit float or 32/64-bit signless integer or 8-bit signless integer or 8-bit unsigned integer or 32-bit unsigned integer values |
Hasil:
Hasil | Keterangan |
---|---|
index | tensor of 64-bit signless integer values |
tfl.while
(TFL::WhileOp)
While loop
output = input; while (cond(output)) { output = body(output) }
While loop where all values are passes through arguments with implicit capture.
input: A list of input tensors whose types are T. output: A list of output tensors whose types are T. cond: A region that takes 'input' and returns a boolean scalar tensor. body: A region that takes a list of tensors and returns another list of tensors. Both lists have the same types.
Traits: SingleBlockImplicitTerminator<YieldOp>
, SingleBlock
Interfaces: LoopLikeOpInterface
, TflRuntimeVerifyOpInterface
Attributes:
Atribut | MLIR Type | Keterangan |
---|---|---|
is_stateless | ::mlir::BoolAttr | bool attribute |
Operands:
Operand | Keterangan |
---|---|
input | variadic of tensor of any type values |
Hasil:
Hasil | Keterangan |
---|---|
output | variadic of tensor of any type values |
tfl.yield
(TFL::YieldOp)
Yield operation
The "yield" operation represents a return operation within the conditional and body of structured control flow (eg, while), and a terminator for ControlNodeOp. The operation takes a variable number of operands and produces no results. The operand number and types must match the signature of the region that contains the operation.
Traits: AlwaysSpeculatableImplTrait
, QuantizableResult
, Terminator
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
, TflRuntimeVerifyOpInterface
Effects: MemoryEffects::Effect{}
Operands:
Operand | Keterangan |
---|---|
«unnamed» | variadic of any type |
tfl.zeros_like
(TFL::ZerosLikeOp)
ZerosLike operator
Returns a tensor of zeros with the same shape and type as the input tensor.
Traits: AlwaysSpeculatableImplTrait
, SameOperandsAndResultShape
Interfaces: ConditionallySpeculatable
, NoMemoryEffect (MemoryEffectOpInterface)
, TflRuntimeVerifyOpInterface
Effects: MemoryEffects::Effect{}
Operands:
Operand | Keterangan |
---|---|
input | tensor of 64-bit signless integer or 32-bit signless integer or 32-bit float values |
Hasil:
Hasil | Keterangan |
---|---|
output | tensor of 64-bit signless integer or 32-bit signless integer or 32-bit float values |
Atribut
DimensionMetadataAttr
Dimension metadata.
Sintaksis:
#tfl.dimension_metadata<
::mlir::TFL::DimensionTypeAttr, # format
int32_t, # dense_size
::llvm::ArrayRef<int32_t>, # segments
::llvm::ArrayRef<int32_t> # indices
>
Parameter:
Parameter | C++ type | Keterangan |
---|---|---|
format | ::mlir::TFL::DimensionTypeAttr | dimension_type |
dense_size | int32_t | |
segmen | ::llvm::ArrayRef<int32_t> | |
indeks | ::llvm::ArrayRef<int32_t> |
SparsityParameterAttr
Sparsity parameter.
Sintaksis:
#tfl.sparsity_parameter<
::llvm::ArrayRef<int32_t>, # traversal_order
::llvm::ArrayRef<int32_t>, # block_map
::llvm::ArrayRef<DimensionMetadataAttr> # dim_metadata
>
Parameter:
Parameter | C++ type | Keterangan |
---|---|---|
traversal_order | ::llvm::ArrayRef<int32_t> | |
block_map | ::llvm::ArrayRef<int32_t> | |
dim_metadata | ::llvm::ArrayRef<DimensionMetadataAttr> |
ConstBytesAttr
A string attribute representation of compiled bytes
Syntax Examples:
#tfl<const_bytes : "0xDEADBEEF">
Parameter:
Parameter | C++ type | Keterangan |
---|---|---|
nilai | ::llvm::StringRef |
DimensionTypeAttr
dimension_type
Sintaksis:
#tfl.dimension_type_attr<
::mlir::TFL::DimensionType # value
>
Enum cases:
- DENSE (
DENSE
) - SPARSE_CSR (
SPARSE_CSR
)
Parameter:
Parameter | C++ type | Keterangan |
---|---|---|
nilai | ::mlir::TFL::DimensionType | an enum of type DimensionType |
LSTMKernelTypeAttr
lstm_kernel_type
Sintaksis:
#tfl.lstm_kernel_type_attr<
::mlir::TFL::LSTMKernelType # value
>
Enum cases:
- FULL (
FULL
) - BASIC (
BASIC
)
Parameter:
Parameter | C++ type | Keterangan |
---|---|---|
nilai | ::mlir::TFL::LSTMKernelType | an enum of type LSTMKernelType |
MirrorPaddingTypeAttr
mirror_pad_enum
Sintaksis:
#tfl.mirror_pad_attr<
::mlir::TFL::MirrorPaddingType # value
>
Enum cases:
- REFLECT (
REFLECT
) - SYMMETRIC (
SYMMETRIC
)
Parameter:
Parameter | C++ type | Keterangan |
---|---|---|
nilai | ::mlir::TFL::MirrorPaddingType | an enum of type MirrorPaddingType |
Enums
DimensionType
dimension_type
Cases:
Simbol | Nilai | Rangkaian |
---|---|---|
PADAT | 0 | PADAT |
SPARSE_CSR | 1 | SPARSE_CSR |
LSTMKernelType
lstm_kernel_type
Cases:
Simbol | Nilai | Rangkaian |
---|---|---|
PENUH | 0 | PENUH |
DASAR | 1 | DASAR |
MirrorPaddingType
mirror_pad_enum
Cases:
Simbol | Nilai | Rangkaian |
---|---|---|
MENCERMINKAN | 0 | MENCERMINKAN |
SIMETRIS | 1 | SIMETRIS |