Google I / O là một kết quả hoàn hảo! Cập nhật các phiên TensorFlow Xem phiên

Cắt tỉa để suy luận trên thiết bị w / XNNPACK

Xem trên TensorFlow.org Chạy trong Google Colab Xem nguồn trên GitHub Tải xuống sổ ghi chép

Chào mừng bạn đến hướng dẫn về trọng lượng Keras cắt tỉa để cải thiện độ trễ của suy luận trên thiết bị thông qua XNNPACK .

Hướng dẫn này trình bày việc sử dụng vừa được giới thiệu tfmot.sparsity.keras.PruningPolicy API và chứng minh làm thế nào nó có thể được sử dụng để đẩy mạnh mô hình chủ yếu là xoắn trên các CPU hiện đại sử dụng XNNPACK thưa thớt suy luận .

Hướng dẫn bao gồm các bước sau của quá trình tạo mô hình:

  • Xây dựng và đào tạo đường cơ sở dày đặc
  • Tinh chỉnh mô hình với cắt tỉa
  • Chuyển đổi sang TFLite
  • Điểm chuẩn trên thiết bị

Hướng dẫn này không bao gồm các phương pháp hay nhất để tinh chỉnh bằng cách cắt tỉa. Để biết thông tin chi tiết hơn về chủ đề này, xin vui lòng kiểm tra của chúng tôi hướng dẫn toàn diện .

Thành lập

 pip install -q tensorflow
 pip install -q tensorflow-model-optimization
import tempfile

import tensorflow as tf
import numpy as np

from tensorflow import keras
import tensorflow_datasets as tfds
import tensorflow_model_optimization as tfmot

%load_ext tensorboard

Xây dựng và đào tạo mô hình dày đặc

Chúng tôi xây dựng và đào tạo một đơn giản ban đầu CNN cho nhiệm vụ phân loại trên CIFAR10 tập dữ liệu.

# Load CIFAR10 dataset.
(ds_train, ds_val, ds_test), ds_info = tfds.load(
    'cifar10',
    split=['train[:90%]', 'train[90%:]', 'test'],
    as_supervised=True,
    with_info=True,
)

# Normalize the input image so that each pixel value is between 0 and 1.
def normalize_img(image, label):
  """Normalizes images: `uint8` -> `float32`."""
  return tf.image.convert_image_dtype(image, tf.float32), label

# Load the data in batches of 128 images.
batch_size = 128
def prepare_dataset(ds, buffer_size=None):
  ds = ds.map(normalize_img, num_parallel_calls=tf.data.experimental.AUTOTUNE)
  ds = ds.cache()
  if buffer_size:
    ds = ds.shuffle(buffer_size)
  ds = ds.batch(batch_size)
  ds = ds.prefetch(tf.data.experimental.AUTOTUNE)
  return ds

ds_train = prepare_dataset(ds_train,
                           buffer_size=ds_info.splits['train'].num_examples)
ds_val = prepare_dataset(ds_val)
ds_test = prepare_dataset(ds_test)

# Build the dense baseline model.
dense_model = keras.Sequential([
    keras.layers.InputLayer(input_shape=(32, 32, 3)),
    keras.layers.ZeroPadding2D(padding=1),
    keras.layers.Conv2D(
        filters=8,
        kernel_size=(3, 3),
        strides=(2, 2),
        padding='valid'),
    keras.layers.BatchNormalization(),
    keras.layers.ReLU(),
    keras.layers.DepthwiseConv2D(kernel_size=(3, 3), padding='same'),
    keras.layers.BatchNormalization(),
    keras.layers.ReLU(),
    keras.layers.Conv2D(filters=16, kernel_size=(1, 1)),
    keras.layers.BatchNormalization(),
    keras.layers.ReLU(),
    keras.layers.ZeroPadding2D(padding=1),
    keras.layers.DepthwiseConv2D(
        kernel_size=(3, 3), strides=(2, 2), padding='valid'),
    keras.layers.BatchNormalization(),
    keras.layers.ReLU(),
    keras.layers.Conv2D(filters=32, kernel_size=(1, 1)),
    keras.layers.BatchNormalization(),
    keras.layers.ReLU(),
    keras.layers.GlobalAveragePooling2D(),
    keras.layers.Flatten(),
    keras.layers.Dense(10)
])

# Compile and train the dense model for 10 epochs.
dense_model.compile(
    loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
    optimizer='adam',
    metrics=['accuracy'])

dense_model.fit(
  ds_train,
  epochs=10,
  validation_data=ds_val)

# Evaluate the dense model.
_, dense_model_accuracy = dense_model.evaluate(ds_test, verbose=0)
2021-08-13 11:13:35.517009: E tensorflow/stream_executor/cuda/cuda_driver.cc:271] failed call to cuInit: CUDA_ERROR_NO_DEVICE: no CUDA-capable device is detected
2021-08-13 11:13:35.517068: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (kokoro-gcp-ubuntu-prod-1682665100): /proc/driver/nvidia/version does not exist
2021-08-13 11:13:35.517823: I tensorflow/core/platform/cpu_feature_guard.cc:142] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX2 AVX512F FMA
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
Epoch 1/10
2021-08-13 11:13:36.392179: I tensorflow/compiler/mlir/mlir_graph_optimization_pass.cc:185] None of the MLIR Optimization Passes are enabled (registered 2)
352/352 [==============================] - 12s 21ms/step - loss: 1.9929 - accuracy: 0.2651 - val_loss: 2.5594 - val_accuracy: 0.1466
Epoch 2/10
352/352 [==============================] - 7s 19ms/step - loss: 1.7293 - accuracy: 0.3582 - val_loss: 1.7533 - val_accuracy: 0.3414
Epoch 3/10
352/352 [==============================] - 7s 19ms/step - loss: 1.6531 - accuracy: 0.3849 - val_loss: 1.6463 - val_accuracy: 0.3886
Epoch 4/10
352/352 [==============================] - 7s 19ms/step - loss: 1.6073 - accuracy: 0.4024 - val_loss: 1.6127 - val_accuracy: 0.3980
Epoch 5/10
352/352 [==============================] - 7s 19ms/step - loss: 1.5692 - accuracy: 0.4200 - val_loss: 1.5552 - val_accuracy: 0.4228
Epoch 6/10
352/352 [==============================] - 7s 19ms/step - loss: 1.5358 - accuracy: 0.4344 - val_loss: 1.6375 - val_accuracy: 0.4030
Epoch 7/10
352/352 [==============================] - 7s 19ms/step - loss: 1.5074 - accuracy: 0.4475 - val_loss: 1.5514 - val_accuracy: 0.4258
Epoch 8/10
352/352 [==============================] - 7s 19ms/step - loss: 1.4810 - accuracy: 0.4598 - val_loss: 1.7087 - val_accuracy: 0.3866
Epoch 9/10
352/352 [==============================] - 7s 19ms/step - loss: 1.4610 - accuracy: 0.4669 - val_loss: 1.5219 - val_accuracy: 0.4492
Epoch 10/10
352/352 [==============================] - 7s 19ms/step - loss: 1.4445 - accuracy: 0.4748 - val_loss: 1.5329 - val_accuracy: 0.4302

Xây dựng mô hình thưa thớt

Sử dụng các hướng dẫn từ các hướng dẫn toàn diện , chúng tôi áp dụng tfmot.sparsity.keras.prune_low_magnitude chức năng với các thông số mà mục tiêu trên thiết bị tăng tốc qua tỉa tức tfmot.sparsity.keras.PruneForLatencyOnXNNPack chính sách.

prune_low_magnitude = tfmot.sparsity.keras.prune_low_magnitude

# Compute end step to finish pruning after after 5 epochs.
end_epoch = 5

num_iterations_per_epoch = len(ds_train)
end_step =  num_iterations_per_epoch * end_epoch

# Define parameters for pruning.
pruning_params = {
      'pruning_schedule': tfmot.sparsity.keras.PolynomialDecay(initial_sparsity=0.25,
                                                               final_sparsity=0.75,
                                                               begin_step=0,
                                                               end_step=end_step),
      'pruning_policy': tfmot.sparsity.keras.PruneForLatencyOnXNNPack()
}

# Try to apply pruning wrapper with pruning policy parameter.
try:
  model_for_pruning = prune_low_magnitude(dense_model, **pruning_params)
except ValueError as e:
  print(e)
Could not find a `GlobalAveragePooling2D` layer with `keepdims = True` in all output branches

Cuộc gọi prune_low_magnitude kết quả trong ValueError với thông điệp Could not find a GlobalAveragePooling2D layer with keepdims = True in all output branches . Thông điệp chỉ ra rằng mô hình không được hỗ trợ cắt tỉa với chính sách tfmot.sparsity.keras.PruneForLatencyOnXNNPack và đặc biệt là lớp GlobalAveragePooling2D đòi hỏi các tham số keepdims = True . Hãy sửa chữa đó và bôi lại sau prune_low_magnitude chức năng.

fixed_dense_model = keras.Sequential([
    keras.layers.InputLayer(input_shape=(32, 32, 3)),
    keras.layers.ZeroPadding2D(padding=1),
    keras.layers.Conv2D(
        filters=8,
        kernel_size=(3, 3),
        strides=(2, 2),
        padding='valid'),
    keras.layers.BatchNormalization(),
    keras.layers.ReLU(),
    keras.layers.DepthwiseConv2D(kernel_size=(3, 3), padding='same'),
    keras.layers.BatchNormalization(),
    keras.layers.ReLU(),
    keras.layers.Conv2D(filters=16, kernel_size=(1, 1)),
    keras.layers.BatchNormalization(),
    keras.layers.ReLU(),
    keras.layers.ZeroPadding2D(padding=1),
    keras.layers.DepthwiseConv2D(
        kernel_size=(3, 3), strides=(2, 2), padding='valid'),
    keras.layers.BatchNormalization(),
    keras.layers.ReLU(),
    keras.layers.Conv2D(filters=32, kernel_size=(1, 1)),
    keras.layers.BatchNormalization(),
    keras.layers.ReLU(),
    keras.layers.GlobalAveragePooling2D(keepdims=True),
    keras.layers.Flatten(),
    keras.layers.Dense(10)
])

# Use the pretrained model for pruning instead of training from scratch.
fixed_dense_model.set_weights(dense_model.get_weights())

# Try to reapply pruning wrapper.
model_for_pruning = prune_low_magnitude(fixed_dense_model, **pruning_params)
/tmpfs/src/tf_docs_env/lib/python3.7/site-packages/keras/engine/base_layer.py:2223: UserWarning: `layer.add_variable` is deprecated and will be removed in a future version. Please use `layer.add_weight` method instead.
  warnings.warn('`layer.add_variable` is deprecated and '

Gọi trình prune_low_magnitude đã kết thúc mà không có bất kỳ lỗi có nghĩa là mô hình được hỗ trợ đầy đủ cho tfmot.sparsity.keras.PruneForLatencyOnXNNPack chính sách và có thể được tăng tốc bằng XNNPACK thưa thớt suy luận .

Tinh chỉnh mô hình thưa thớt

Sau khi dụ cắt tỉa , chúng ta tinh chỉnh mô hình thưa thớt sử dụng các trọng số của mô hình dày đặc. Chúng tôi bắt đầu tinh chỉnh mô hình với độ thưa thớt 25% (25% trọng số được đặt thành 0) và kết thúc với độ thưa thớt 75%.

logdir = tempfile.mkdtemp()

callbacks = [
  tfmot.sparsity.keras.UpdatePruningStep(),
  tfmot.sparsity.keras.PruningSummaries(log_dir=logdir),
]

model_for_pruning.compile(
    loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
    optimizer='adam',
    metrics=['accuracy'])

model_for_pruning.fit(
  ds_train,
  epochs=15,
  validation_data=ds_val,
  callbacks=callbacks)

# Evaluate the dense model.
_, pruned_model_accuracy = model_for_pruning.evaluate(ds_test, verbose=0)

print('Dense model test accuracy:', dense_model_accuracy)
print('Pruned model test accuracy:', pruned_model_accuracy)
2021-08-13 11:14:50.266658: I tensorflow/core/profiler/lib/profiler_session.cc:131] Profiler session initializing.
2021-08-13 11:14:50.266694: I tensorflow/core/profiler/lib/profiler_session.cc:146] Profiler session started.
2021-08-13 11:14:50.833248: I tensorflow/core/profiler/lib/profiler_session.cc:164] Profiler session tear down.
2021-08-13 11:14:50.851018: W tensorflow/python/util/util.cc:348] Sets are not currently considered sequences, but this may change in the future, so consider avoiding using them.
Epoch 1/15
 10/352 [..............................] - ETA: 8s - loss: 1.4245 - accuracy: 0.5016
2021-08-13 11:14:52.593103: I tensorflow/core/profiler/lib/profiler_session.cc:131] Profiler session initializing.
2021-08-13 11:14:52.593147: I tensorflow/core/profiler/lib/profiler_session.cc:146] Profiler session started.
2021-08-13 11:14:52.617240: I tensorflow/core/profiler/lib/profiler_session.cc:66] Profiler session collecting data.
2021-08-13 11:14:52.619415: I tensorflow/core/profiler/lib/profiler_session.cc:164] Profiler session tear down.
2021-08-13 11:14:52.623098: I tensorflow/core/profiler/rpc/client/save_profile.cc:136] Creating directory: /tmp/tmpkwu32h8j/train/plugins/profile/2021_08_13_11_14_52

2021-08-13 11:14:52.625016: I tensorflow/core/profiler/rpc/client/save_profile.cc:142] Dumped gzipped tool data for trace.json.gz to /tmp/tmpkwu32h8j/train/plugins/profile/2021_08_13_11_14_52/kokoro-gcp-ubuntu-prod-1682665100.trace.json.gz
2021-08-13 11:14:52.628674: I tensorflow/core/profiler/rpc/client/save_profile.cc:136] Creating directory: /tmp/tmpkwu32h8j/train/plugins/profile/2021_08_13_11_14_52

2021-08-13 11:14:52.628785: I tensorflow/core/profiler/rpc/client/save_profile.cc:142] Dumped gzipped tool data for memory_profile.json.gz to /tmp/tmpkwu32h8j/train/plugins/profile/2021_08_13_11_14_52/kokoro-gcp-ubuntu-prod-1682665100.memory_profile.json.gz
2021-08-13 11:14:52.629073: I tensorflow/core/profiler/rpc/client/capture_profile.cc:251] Creating directory: /tmp/tmpkwu32h8j/train/plugins/profile/2021_08_13_11_14_52
Dumped tool data for xplane.pb to /tmp/tmpkwu32h8j/train/plugins/profile/2021_08_13_11_14_52/kokoro-gcp-ubuntu-prod-1682665100.xplane.pb
Dumped tool data for overview_page.pb to /tmp/tmpkwu32h8j/train/plugins/profile/2021_08_13_11_14_52/kokoro-gcp-ubuntu-prod-1682665100.overview_page.pb
Dumped tool data for input_pipeline.pb to /tmp/tmpkwu32h8j/train/plugins/profile/2021_08_13_11_14_52/kokoro-gcp-ubuntu-prod-1682665100.input_pipeline.pb
Dumped tool data for tensorflow_stats.pb to /tmp/tmpkwu32h8j/train/plugins/profile/2021_08_13_11_14_52/kokoro-gcp-ubuntu-prod-1682665100.tensorflow_stats.pb
Dumped tool data for kernel_stats.pb to /tmp/tmpkwu32h8j/train/plugins/profile/2021_08_13_11_14_52/kokoro-gcp-ubuntu-prod-1682665100.kernel_stats.pb
352/352 [==============================] - 9s 20ms/step - loss: 1.4474 - accuracy: 0.4732 - val_loss: 1.5224 - val_accuracy: 0.4368
Epoch 2/15
352/352 [==============================] - 7s 19ms/step - loss: 1.4763 - accuracy: 0.4601 - val_loss: 1.9179 - val_accuracy: 0.3514
Epoch 3/15
352/352 [==============================] - 7s 19ms/step - loss: 1.4861 - accuracy: 0.4602 - val_loss: 1.5849 - val_accuracy: 0.4100
Epoch 4/15
352/352 [==============================] - 7s 19ms/step - loss: 1.4838 - accuracy: 0.4614 - val_loss: 1.5123 - val_accuracy: 0.4412
Epoch 5/15
352/352 [==============================] - 7s 19ms/step - loss: 1.4669 - accuracy: 0.4696 - val_loss: 1.7005 - val_accuracy: 0.3620
Epoch 6/15
352/352 [==============================] - 7s 19ms/step - loss: 1.4497 - accuracy: 0.4772 - val_loss: 1.4644 - val_accuracy: 0.4576
Epoch 7/15
352/352 [==============================] - 7s 19ms/step - loss: 1.4397 - accuracy: 0.4799 - val_loss: 1.4532 - val_accuracy: 0.4710
Epoch 8/15
352/352 [==============================] - 7s 19ms/step - loss: 1.4307 - accuracy: 0.4844 - val_loss: 2.0308 - val_accuracy: 0.3674
Epoch 9/15
352/352 [==============================] - 7s 19ms/step - loss: 1.4254 - accuracy: 0.4849 - val_loss: 1.6031 - val_accuracy: 0.4180
Epoch 10/15
352/352 [==============================] - 7s 19ms/step - loss: 1.4200 - accuracy: 0.4834 - val_loss: 1.8140 - val_accuracy: 0.3768
Epoch 11/15
352/352 [==============================] - 7s 19ms/step - loss: 1.4132 - accuracy: 0.4892 - val_loss: 1.4289 - val_accuracy: 0.4810
Epoch 12/15
352/352 [==============================] - 7s 19ms/step - loss: 1.4075 - accuracy: 0.4915 - val_loss: 1.4257 - val_accuracy: 0.4734
Epoch 13/15
352/352 [==============================] - 7s 19ms/step - loss: 1.4032 - accuracy: 0.4922 - val_loss: 1.4693 - val_accuracy: 0.4620
Epoch 14/15
352/352 [==============================] - 7s 19ms/step - loss: 1.3992 - accuracy: 0.4950 - val_loss: 1.3901 - val_accuracy: 0.4860
Epoch 15/15
352/352 [==============================] - 7s 19ms/step - loss: 1.3957 - accuracy: 0.4952 - val_loss: 1.4754 - val_accuracy: 0.4620
Dense model test accuracy: 0.43209999799728394
Pruned model test accuracy: 0.4596000015735626

Các bản ghi cho thấy sự tiến triển của sự thưa thớt trên cơ sở mỗi lớp.

#docs_infra: no_execute
%tensorboard --logdir={logdir}

Sau khi tinh chỉnh bằng cách cắt tỉa, độ chính xác của thử nghiệm cho thấy sự cải thiện khiêm tốn (43% đến 44%) so với mô hình dày đặc. Hãy so sánh trên thiết bị độ trễ bằng TFLite benchmark .

Chuyển đổi mô hình và đo điểm chuẩn

Để chuyển đổi mô hình tỉa vào TFLite, chúng ta cần thay thế PruneLowMagnitude giấy gói với các lớp ban đầu thông qua strip_pruning chức năng. Ngoài ra, vì trọng lượng của mô hình tỉa ( model_for_pruning ) chủ yếu là số không, chúng ta có thể áp dụng một tối ưu hóa tf.lite.Optimize.EXPERIMENTAL_SPARSITY đến hiệu quả lưu trữ các kết quả mô hình TFLite. Cờ tối ưu hóa này không bắt buộc đối với mô hình dày đặc.

converter = tf.lite.TFLiteConverter.from_keras_model(dense_model)
dense_tflite_model = converter.convert()

_, dense_tflite_file = tempfile.mkstemp('.tflite')
with open(dense_tflite_file, 'wb') as f:
  f.write(dense_tflite_model)

model_for_export = tfmot.sparsity.keras.strip_pruning(model_for_pruning)

converter = tf.lite.TFLiteConverter.from_keras_model(model_for_export)
converter.optimizations = [tf.lite.Optimize.EXPERIMENTAL_SPARSITY]
pruned_tflite_model = converter.convert()

_, pruned_tflite_file = tempfile.mkstemp('.tflite')
with open(pruned_tflite_file, 'wb') as f:
  f.write(pruned_tflite_model)
INFO:tensorflow:Assets written to: /tmp/tmp0yx5e3fy/assets
INFO:tensorflow:Assets written to: /tmp/tmp0yx5e3fy/assets
2021-08-13 11:16:36.564681: I tensorflow/core/grappler/devices.cc:66] Number of eligible GPUs (core count >= 8, compute capability >= 0.0): 0
2021-08-13 11:16:36.564926: I tensorflow/core/grappler/clusters/single_machine.cc:357] Starting new session
2021-08-13 11:16:36.568512: I tensorflow/core/grappler/optimizers/meta_optimizer.cc:1137] Optimization results for grappler item: graph_to_optimize
  function_optimizer: function_optimizer did nothing. time = 0.008ms.
  function_optimizer: function_optimizer did nothing. time = 0.001ms.
WARNING:tensorflow:Compiled the loaded model, but the compiled metrics have yet to be built. `model.compile_metrics` will be empty until you train or evaluate the model.
2021-08-13 11:16:36.664551: W tensorflow/compiler/mlir/lite/python/tf_tfl_flatbuffer_helpers.cc:351] Ignored output_format.
2021-08-13 11:16:36.664597: W tensorflow/compiler/mlir/lite/python/tf_tfl_flatbuffer_helpers.cc:354] Ignored drop_control_dependency.
2021-08-13 11:16:36.668981: I tensorflow/compiler/mlir/tensorflow/utils/dump_mlir_util.cc:210] disabling MLIR crash reproducer, set env var `MLIR_CRASH_REPRODUCER_DIRECTORY` to enable.
WARNING:tensorflow:Compiled the loaded model, but the compiled metrics have yet to be built. `model.compile_metrics` will be empty until you train or evaluate the model.
INFO:tensorflow:Assets written to: /tmp/tmpenn8hns6/assets
INFO:tensorflow:Assets written to: /tmp/tmpenn8hns6/assets
2021-08-13 11:16:39.184787: I tensorflow/core/grappler/devices.cc:66] Number of eligible GPUs (core count >= 8, compute capability >= 0.0): 0
2021-08-13 11:16:39.185019: I tensorflow/core/grappler/clusters/single_machine.cc:357] Starting new session
2021-08-13 11:16:39.188948: I tensorflow/core/grappler/optimizers/meta_optimizer.cc:1137] Optimization results for grappler item: graph_to_optimize
  function_optimizer: function_optimizer did nothing. time = 0.01ms.
  function_optimizer: function_optimizer did nothing. time = 0.002ms.

2021-08-13 11:16:39.294765: W tensorflow/compiler/mlir/lite/python/tf_tfl_flatbuffer_helpers.cc:351] Ignored output_format.
2021-08-13 11:16:39.294816: W tensorflow/compiler/mlir/lite/python/tf_tfl_flatbuffer_helpers.cc:354] Ignored drop_control_dependency.

Theo các hướng dẫn của TFLite Mẫu Điểm chuẩn cụ , chúng tôi xây dựng các công cụ, tải nó lên thiết bị Android cùng với dày đặc và các mô hình TFLite tỉa, và điểm chuẩn cả hai mô hình trên thiết bị.

! adb shell /data/local/tmp/benchmark_model \
    --graph=/data/local/tmp/dense_model.tflite \
    --use_xnnpack=true \
    --num_runs=100 \
    --num_threads=1
/bin/bash: adb: command not found
! adb shell /data/local/tmp/benchmark_model \
    --graph=/data/local/tmp/pruned_model.tflite \
    --use_xnnpack=true \
    --num_runs=100 \
    --num_threads=1
/bin/bash: adb: command not found

Điểm chuẩn trên Pixel 4 kết quả trong thời gian suy luận bình quân 17us cho mô hình dày đặc và mục tiêu 12 cho mô hình tỉa. Các tiêu chuẩn trên thiết bị chứng minh một 5us rõ ràng hoặc 30% cải thiện độ trễ ngay cả đối với mô hình nhỏ như vậy. Theo kinh nghiệm của chúng tôi, các mô hình lớn hơn dựa trên MobileNetV3 hoặc EfficientNet-lite chương trình cải tiến hiệu suất tương tự. Tốc độ thay đổi dựa trên sự đóng góp tương đối của các chập 1x1 đối với mô hình tổng thể.

Sự kết luận

Trong hướng dẫn này, chúng tôi chỉ ra cách người ta có thể tạo các mô hình thưa thớt để có hiệu suất trên thiết bị nhanh hơn bằng cách sử dụng chức năng mới được giới thiệu bởi API TF MOT và XNNPack. Các mô hình thưa thớt này nhỏ hơn và nhanh hơn so với các mô hình dày đặc của chúng trong khi vẫn giữ được hoặc thậm chí vượt trội hơn về chất lượng của chúng.

Chúng tôi khuyến khích bạn thử khả năng mới này có thể đặc biệt quan trọng để triển khai các mô hình của bạn trên thiết bị.