tfrs.layers.loss.SamplingProbablityCorrection
Stay organized with collections
Save and categorize content based on your preferences.
Sampling probability correction.
tfrs.layers.loss.SamplingProbablityCorrection(
trainable=True, name=None, dtype=None, dynamic=False, **kwargs
)
Methods
call
call(
inputs, *args, **kwargs
)
This is where the layer's logic lives.
The call()
method may not create state (except in its first
invocation, wrapping the creation of variables or other resources in
tf.init_scope()
). It is recommended to create state, including
tf.Variable
instances and nested Layer
instances,
in __init__()
, or in the build()
method that is
called automatically before call()
executes for the first time.
Args |
inputs
|
Input tensor, or dict/list/tuple of input tensors.
The first positional inputs argument is subject to special rules:
inputs must be explicitly passed. A layer cannot have zero
arguments, and inputs cannot be provided via the default value
of a keyword argument.
- NumPy array or Python scalar values in
inputs get cast as
tensors.
- Keras mask metadata is only collected from
inputs .
- Layers are built (
build(input_shape) method)
using shape info from inputs only.
input_spec compatibility is only checked against inputs .
- Mixed precision input casting is only applied to
inputs .
If a layer has tensor arguments in *args or **kwargs , their
casting behavior in mixed precision should be handled manually.
- The SavedModel input specification is generated using
inputs
only.
- Integration with various ecosystem packages like TFMOT, TFLite,
TF.js, etc is only supported for
inputs and not for tensors in
positional and keyword arguments.
|
*args
|
Additional positional arguments. May contain tensors, although
this is not recommended, for the reasons above.
|
**kwargs
|
Additional keyword arguments. May contain tensors, although
this is not recommended, for the reasons above.
The following optional keyword arguments are reserved:
training : Boolean scalar tensor of Python boolean indicating
whether the call is meant for training or inference.
mask : Boolean input mask. If the layer's call() method takes a
mask argument, its default value will be set to the mask
generated for inputs by the previous layer (if input did come
from a layer that generated a corresponding mask, i.e. if it came
from a Keras layer with masking support).
|
Returns |
A tensor or list/tuple of tensors.
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2024-04-26 UTC.
[null,null,["Last updated 2024-04-26 UTC."],[],[],null,["# tfrs.layers.loss.SamplingProbablityCorrection\n\n\u003cbr /\u003e\n\n|----------------------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/tensorflow/recommenders/blob/v0.7.3/tensorflow_recommenders/layers/loss.py#L150-L158) |\n\nSampling probability correction. \n\n tfrs.layers.loss.SamplingProbablityCorrection(\n trainable=True, name=None, dtype=None, dynamic=False, **kwargs\n )\n\nMethods\n-------\n\n### `call`\n\n call(\n inputs, *args, **kwargs\n )\n\nThis is where the layer's logic lives.\n\nThe `call()` method may not create state (except in its first\ninvocation, wrapping the creation of variables or other resources in\n[`tf.init_scope()`](https://www.tensorflow.org/api_docs/python/tf/init_scope)). It is recommended to create state, including\n[`tf.Variable`](https://www.tensorflow.org/api_docs/python/tf/Variable) instances and nested `Layer` instances,\nin `__init__()`, or in the `build()` method that is\ncalled automatically before `call()` executes for the first time.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ||\n|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `inputs` | Input tensor, or dict/list/tuple of input tensors. The first positional `inputs` argument is subject to special rules: \u003cbr /\u003e - `inputs` must be explicitly passed. A layer cannot have zero arguments, and `inputs` cannot be provided via the default value of a keyword argument. - NumPy array or Python scalar values in `inputs` get cast as tensors. - Keras mask metadata is only collected from `inputs`. - Layers are built (`build(input_shape)` method) using shape info from `inputs` only. - `input_spec` compatibility is only checked against `inputs`. - Mixed precision input casting is only applied to `inputs`. If a layer has tensor arguments in `*args` or `**kwargs`, their casting behavior in mixed precision should be handled manually. - The SavedModel input specification is generated using `inputs` only. - Integration with various ecosystem packages like TFMOT, TFLite, TF.js, etc is only supported for `inputs` and not for tensors in positional and keyword arguments. |\n| `*args` | Additional positional arguments. May contain tensors, although this is not recommended, for the reasons above. |\n| `**kwargs` | Additional keyword arguments. May contain tensors, although this is not recommended, for the reasons above. The following optional keyword arguments are reserved: - `training`: Boolean scalar tensor of Python boolean indicating whether the `call` is meant for training or inference. - `mask`: Boolean input mask. If the layer's `call()` method takes a `mask` argument, its default value will be set to the mask generated for `inputs` by the previous layer (if `input` did come from a layer that generated a corresponding mask, i.e. if it came from a Keras layer with masking support). |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ||\n|---|---|\n| A tensor or list/tuple of tensors. ||\n\n\u003cbr /\u003e"]]