Warning: This project is deprecated. TensorFlow Addons has stopped development,
The project will only be providing minimal maintenance releases until May 2024. See the full
announcement here or on
github.
tfa.activations.lisht
Stay organized with collections
Save and categorize content based on your preferences.
LiSHT: Non-Parameteric Linearly Scaled Hyperbolic Tangent Activation Function.
tfa.activations.lisht(
x: tfa.types.TensorLike
) -> tf.Tensor
Computes linearly scaled hyperbolic tangent (LiSHT):
\[
\mathrm{lisht}(x) = x * \tanh(x).
\]
See LiSHT: Non-Parameteric Linearly Scaled Hyperbolic Tangent Activation Function for Neural Networks.
Usage:
x = tf.constant([1.0, 0.0, 1.0])
tfa.activations.lisht(x)
<tf.Tensor: shape=(3,), dtype=float32, numpy=array([0.7615942, 0. , 0.7615942], dtype=float32)>
Args |
x
|
A Tensor . Must be one of the following types:
bfloat16 , float16 , float32 , float64 .
|
Returns |
A Tensor . Has the same type as x .
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2023-05-25 UTC.
[null,null,["Last updated 2023-05-25 UTC."],[],[],null,["# tfa.activations.lisht\n\n|---------------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/tensorflow/addons/blob/v0.20.0/tensorflow_addons/activations/lisht.py#L21-L46) |\n\nLiSHT: Non-Parameteric Linearly Scaled Hyperbolic Tangent Activation Function. \n\n tfa.activations.lisht(\n x: ../../tfa/types/TensorLike\n ) -\u003e tf.Tensor\n\nComputes linearly scaled hyperbolic tangent (LiSHT):\n\n\\\\\\[\n\\\\mathrm{lisht}(x) = x \\* \\\\tanh(x).\n\\\\\\]\n\nSee [LiSHT: Non-Parameteric Linearly Scaled Hyperbolic Tangent Activation Function for Neural Networks](https://arxiv.org/abs/1901.05894).\n\n#### Usage:\n\n x = tf.constant([1.0, 0.0, 1.0])\n tfa.activations.lisht(x)\n \u003ctf.Tensor: shape=(3,), dtype=float32, numpy=array([0.7615942, 0. , 0.7615942], dtype=float32)\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|-----|----------------------------------------------------------------------------------------------|\n| `x` | A `Tensor`. Must be one of the following types: `bfloat16`, `float16`, `float32`, `float64`. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|---|---|\n| A `Tensor`. Has the same type as `x`. ||\n\n\u003cbr /\u003e"]]