Warning: This project is deprecated. TensorFlow Addons has stopped development,
The project will only be providing minimal maintenance releases until May 2024. See the full
announcement here or on
github.
tfa.losses.ContrastiveLoss
Stay organized with collections
Save and categorize content based on your preferences.
Computes the contrastive loss between y_true
and y_pred
.
tfa.losses.ContrastiveLoss(
margin: tfa.types.Number
= 1.0,
reduction: str = tf.keras.losses.Reduction.SUM_OVER_BATCH_SIZE,
name: str = 'contrastive_loss'
)
This loss encourages the embedding to be close to each other for
the samples of the same label and the embedding to be far apart at least
by the margin constant for the samples of different labels.
See: http://yann.lecun.com/exdb/publis/pdf/hadsell-chopra-lecun-06.pdf
We expect labels y_true
to be provided as 1-D integer Tensor
with shape [batch_size]
of binary integer labels. And y_pred
must be
1-D float Tensor
with shape [batch_size]
of distances between two
embedding matrices.
The euclidean distances y_pred
between two embedding matrices
a
and b
with shape [batch_size, hidden_size]
can be computed
as follows:
a = tf.constant([[1, 2],
[3, 4],[5, 6]], dtype=tf.float16)
b = tf.constant([[5, 9],
[3, 6],[1, 8]], dtype=tf.float16)
y_pred = tf.linalg.norm(a - b, axis=1)
y_pred
<tf.Tensor: shape=(3,), dtype=float16, numpy=array([8.06 , 2. , 4.473],
dtype=float16)>
<... Note: constants a & b have been used purely for
example purposes and have no significant value ...>
Args |
margin
|
Float , margin term in the loss definition.
Default value is 1.0.
|
reduction
|
(Optional) Type of tf.keras.losses.Reduction to apply.
Default value is SUM_OVER_BATCH_SIZE .
|
name
|
(Optional) name for the loss.
|
Methods
from_config
@classmethod
from_config(
config
)
Instantiates a Loss
from its config (output of get_config()
).
Args |
config
|
Output of get_config() .
|
get_config
View source
get_config()
Returns the config dictionary for a Loss
instance.
__call__
__call__(
y_true, y_pred, sample_weight=None
)
Invokes the Loss
instance.
Args |
y_true
|
Ground truth values. shape = [batch_size, d0, .. dN] , except
sparse loss functions such as sparse categorical crossentropy where
shape = [batch_size, d0, .. dN-1]
|
y_pred
|
The predicted values. shape = [batch_size, d0, .. dN]
|
sample_weight
|
Optional sample_weight acts as a coefficient for the
loss. If a scalar is provided, then the loss is simply scaled by the
given value. If sample_weight is a tensor of size [batch_size] ,
then the total loss for each sample of the batch is rescaled by the
corresponding element in the sample_weight vector. If the shape of
sample_weight is [batch_size, d0, .. dN-1] (or can be
broadcasted to this shape), then each loss element of y_pred is
scaled by the corresponding value of sample_weight . (Note
ondN-1 : all loss functions reduce by 1 dimension, usually
axis=-1.)
|
Returns |
Weighted loss float Tensor . If reduction is NONE , this has
shape [batch_size, d0, .. dN-1] ; otherwise, it is scalar. (Note
dN-1 because all loss functions reduce by 1 dimension, usually
axis=-1.)
|
Raises |
ValueError
|
If the shape of sample_weight is invalid.
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2023-05-25 UTC.
[null,null,["Last updated 2023-05-25 UTC."],[],[],null,["# tfa.losses.ContrastiveLoss\n\n\u003cbr /\u003e\n\n|-----------------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/tensorflow/addons/blob/v0.20.0/tensorflow_addons/losses/contrastive.py#L72-L120) |\n\nComputes the contrastive loss between `y_true` and `y_pred`. \n\n tfa.losses.ContrastiveLoss(\n margin: ../../tfa/types/Number = 1.0,\n reduction: str = tf.keras.losses.Reduction.SUM_OVER_BATCH_SIZE,\n name: str = 'contrastive_loss'\n )\n\nThis loss encourages the embedding to be close to each other for\nthe samples of the same label and the embedding to be far apart at least\nby the margin constant for the samples of different labels.\n\nSee: \u003chttp://yann.lecun.com/exdb/publis/pdf/hadsell-chopra-lecun-06.pdf\u003e\n\nWe expect labels `y_true` to be provided as 1-D integer `Tensor`\nwith shape `[batch_size]` of binary integer labels. And `y_pred` must be\n1-D float `Tensor` with shape `[batch_size]` of distances between two\nembedding matrices.\n\nThe euclidean distances `y_pred` between two embedding matrices\n`a` and `b` with shape `[batch_size, hidden_size]` can be computed\nas follows: \n\n a = tf.constant([[1, 2],\n [3, 4],[5, 6]], dtype=tf.float16)\n b = tf.constant([[5, 9],\n [3, 6],[1, 8]], dtype=tf.float16)\n y_pred = tf.linalg.norm(a - b, axis=1)\n y_pred\n \u003ctf.Tensor: shape=(3,), dtype=float16, numpy=array([8.06 , 2. , 4.473],\n dtype=float16)\u003e\n\n\\\u003c... Note: constants a \\& b have been used purely for\nexample purposes and have no significant value ...\\\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `margin` | `Float`, margin term in the loss definition. Default value is 1.0. |\n| `reduction` | (Optional) Type of [`tf.keras.losses.Reduction`](https://www.tensorflow.org/api_docs/python/tf/keras/losses/Reduction) to apply. Default value is `SUM_OVER_BATCH_SIZE`. |\n| `name` | (Optional) name for the loss. |\n\n\u003cbr /\u003e\n\nMethods\n-------\n\n### `from_config`\n\n @classmethod\n from_config(\n config\n )\n\nInstantiates a `Loss` from its config (output of `get_config()`).\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ||\n|----------|---------------------------|\n| `config` | Output of `get_config()`. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ||\n|---|---|\n| A `Loss` instance. ||\n\n\u003cbr /\u003e\n\n### `get_config`\n\n[View source](https://github.com/tensorflow/addons/blob/v0.20.0/tensorflow_addons/utils/keras_utils.py#L63-L68) \n\n get_config()\n\nReturns the config dictionary for a `Loss` instance.\n\n### `__call__`\n\n __call__(\n y_true, y_pred, sample_weight=None\n )\n\nInvokes the `Loss` instance.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ||\n|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `y_true` | Ground truth values. shape = `[batch_size, d0, .. dN]`, except sparse loss functions such as sparse categorical crossentropy where shape = `[batch_size, d0, .. dN-1]` |\n| `y_pred` | The predicted values. shape = `[batch_size, d0, .. dN]` |\n| `sample_weight` | Optional `sample_weight` acts as a coefficient for the loss. If a scalar is provided, then the loss is simply scaled by the given value. If `sample_weight` is a tensor of size `[batch_size]`, then the total loss for each sample of the batch is rescaled by the corresponding element in the `sample_weight` vector. If the shape of `sample_weight` is `[batch_size, d0, .. dN-1]` (or can be broadcasted to this shape), then each loss element of `y_pred` is scaled by the corresponding value of `sample_weight`. (Note on`dN-1`: all loss functions reduce by 1 dimension, usually axis=-1.) |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ||\n|---|---|\n| Weighted loss float `Tensor`. If `reduction` is `NONE`, this has shape `[batch_size, d0, .. dN-1]`; otherwise, it is scalar. (Note `dN-1` because all loss functions reduce by 1 dimension, usually axis=-1.) ||\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Raises ||\n|--------------|---------------------------------------------|\n| `ValueError` | If the shape of `sample_weight` is invalid. |\n\n\u003cbr /\u003e"]]