Warning: This project is deprecated. TensorFlow Addons has stopped development,
The project will only be providing minimal maintenance releases until May 2024. See the full
announcement here or on
github.
tfa.losses.WeightedKappaLoss
Stay organized with collections
Save and categorize content based on your preferences.
Implements the Weighted Kappa loss function.
tfa.losses.WeightedKappaLoss(
num_classes: int,
weightage: Optional[str] = 'quadratic',
name: Optional[str] = 'cohen_kappa_loss',
epsilon: Optional[Number] = 1e-06,
reduction: str = tf.keras.losses.Reduction.NONE
)
Weighted Kappa loss was introduced in the
Weighted kappa loss function for multi-class classification
of ordinal data in deep learning.
Weighted Kappa is widely used in Ordinal Classification Problems.
The loss value lies in \( [-\infty, \log 2] \), where \( \log 2 \)
means the random prediction.
Usage:
kappa_loss = tfa.losses.WeightedKappaLoss(num_classes=4)
y_true = tf.constant([[0, 0, 1, 0], [0, 1, 0, 0],
[1, 0, 0, 0], [0, 0, 0, 1]])
y_pred = tf.constant([[0.1, 0.2, 0.6, 0.1], [0.1, 0.5, 0.3, 0.1],
[0.8, 0.05, 0.05, 0.1], [0.01, 0.09, 0.1, 0.8]])
loss = kappa_loss(y_true, y_pred)
loss
<tf.Tensor: shape=(), dtype=float32, numpy=-1.1611925>
Usage with tf.keras
API:
model = tf.keras.Model()
model.compile('sgd', loss=tfa.losses.WeightedKappaLoss(num_classes=4))
<... outputs should be softmax results
if you want to weight the samples, just multiply the outputs
by the sample weight ...>
Args |
num_classes
|
Number of unique classes in your dataset.
|
weightage
|
(Optional) Weighting to be considered for calculating
kappa statistics. A valid value is one of
['linear', 'quadratic']. Defaults to 'quadratic'.
|
name
|
(Optional) String name of the metric instance.
|
epsilon
|
(Optional) increment to avoid log zero,
so the loss will be \( \log(1 - k + \epsilon) \), where \( k \) lies
in \( [-1, 1] \). Defaults to 1e-6.
|
Raises |
ValueError
|
If the value passed for weightage is invalid
i.e. not any one of ['linear', 'quadratic']
|
Methods
from_config
@classmethod
from_config(
config
)
Instantiates a Loss
from its config (output of get_config()
).
Args |
config
|
Output of get_config() .
|
get_config
View source
get_config()
Returns the config dictionary for a Loss
instance.
__call__
__call__(
y_true, y_pred, sample_weight=None
)
Invokes the Loss
instance.
Args |
y_true
|
Ground truth values. shape = [batch_size, d0, .. dN] , except
sparse loss functions such as sparse categorical crossentropy where
shape = [batch_size, d0, .. dN-1]
|
y_pred
|
The predicted values. shape = [batch_size, d0, .. dN]
|
sample_weight
|
Optional sample_weight acts as a coefficient for the
loss. If a scalar is provided, then the loss is simply scaled by the
given value. If sample_weight is a tensor of size [batch_size] ,
then the total loss for each sample of the batch is rescaled by the
corresponding element in the sample_weight vector. If the shape of
sample_weight is [batch_size, d0, .. dN-1] (or can be
broadcasted to this shape), then each loss element of y_pred is
scaled by the corresponding value of sample_weight . (Note
ondN-1 : all loss functions reduce by 1 dimension, usually
axis=-1.)
|
Returns |
Weighted loss float Tensor . If reduction is NONE , this has
shape [batch_size, d0, .. dN-1] ; otherwise, it is scalar. (Note
dN-1 because all loss functions reduce by 1 dimension, usually
axis=-1.)
|
Raises |
ValueError
|
If the shape of sample_weight is invalid.
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2023-05-25 UTC.
[null,null,["Last updated 2023-05-25 UTC."],[],[],null,["# tfa.losses.WeightedKappaLoss\n\n|----------------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/tensorflow/addons/blob/v0.20.0/tensorflow_addons/losses/kappa_loss.py#L25-L129) |\n\nImplements the Weighted Kappa loss function. \n\n tfa.losses.WeightedKappaLoss(\n num_classes: int,\n weightage: Optional[str] = 'quadratic',\n name: Optional[str] = 'cohen_kappa_loss',\n epsilon: Optional[Number] = 1e-06,\n reduction: str = tf.keras.losses.Reduction.NONE\n )\n\nWeighted Kappa loss was introduced in the\n[Weighted kappa loss function for multi-class classification\nof ordinal data in deep learning](https://www.sciencedirect.com/science/article/abs/pii/S0167865517301666).\nWeighted Kappa is widely used in Ordinal Classification Problems.\nThe loss value lies in \\\\( \\[-\\\\infty, \\\\log 2\\] \\\\), where \\\\( \\\\log 2 \\\\)\nmeans the random prediction.\n\n#### Usage:\n\n kappa_loss = tfa.losses.WeightedKappaLoss(num_classes=4)\n y_true = tf.constant([[0, 0, 1, 0], [0, 1, 0, 0],\n [1, 0, 0, 0], [0, 0, 0, 1]])\n y_pred = tf.constant([[0.1, 0.2, 0.6, 0.1], [0.1, 0.5, 0.3, 0.1],\n [0.8, 0.05, 0.05, 0.1], [0.01, 0.09, 0.1, 0.8]])\n loss = kappa_loss(y_true, y_pred)\n loss\n \u003ctf.Tensor: shape=(), dtype=float32, numpy=-1.1611925\u003e\n\nUsage with [`tf.keras`](https://www.tensorflow.org/api_docs/python/tf/keras) API: \n\n model = tf.keras.Model()\n model.compile('sgd', loss=tfa.losses.WeightedKappaLoss(num_classes=4))\n\n\\\u003c... outputs should be softmax results\nif you want to weight the samples, just multiply the outputs\nby the sample weight ...\\\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `num_classes` | Number of unique classes in your dataset. |\n| `weightage` | (Optional) Weighting to be considered for calculating kappa statistics. A valid value is one of \\['linear', 'quadratic'\\]. Defaults to 'quadratic'. |\n| `name` | (Optional) String name of the metric instance. |\n| `epsilon` | (Optional) increment to avoid log zero, so the loss will be \\\\( \\\\log(1 - k + \\\\epsilon) \\\\), where \\\\( k \\\\) lies in \\\\( \\[-1, 1\\] \\\\). Defaults to 1e-6. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Raises ------ ||\n|--------------|----------------------------------------------------------------------------------------------|\n| `ValueError` | If the value passed for `weightage` is invalid i.e. not any one of \\['linear', 'quadratic'\\] |\n\n\u003cbr /\u003e\n\nMethods\n-------\n\n### `from_config`\n\n @classmethod\n from_config(\n config\n )\n\nInstantiates a `Loss` from its config (output of `get_config()`).\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ||\n|----------|---------------------------|\n| `config` | Output of `get_config()`. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ||\n|---|---|\n| A `Loss` instance. ||\n\n\u003cbr /\u003e\n\n### `get_config`\n\n[View source](https://github.com/tensorflow/addons/blob/v0.20.0/tensorflow_addons/losses/kappa_loss.py#L122-L129) \n\n get_config()\n\nReturns the config dictionary for a `Loss` instance.\n\n### `__call__`\n\n __call__(\n y_true, y_pred, sample_weight=None\n )\n\nInvokes the `Loss` instance.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ||\n|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `y_true` | Ground truth values. shape = `[batch_size, d0, .. dN]`, except sparse loss functions such as sparse categorical crossentropy where shape = `[batch_size, d0, .. dN-1]` |\n| `y_pred` | The predicted values. shape = `[batch_size, d0, .. dN]` |\n| `sample_weight` | Optional `sample_weight` acts as a coefficient for the loss. If a scalar is provided, then the loss is simply scaled by the given value. If `sample_weight` is a tensor of size `[batch_size]`, then the total loss for each sample of the batch is rescaled by the corresponding element in the `sample_weight` vector. If the shape of `sample_weight` is `[batch_size, d0, .. dN-1]` (or can be broadcasted to this shape), then each loss element of `y_pred` is scaled by the corresponding value of `sample_weight`. (Note on`dN-1`: all loss functions reduce by 1 dimension, usually axis=-1.) |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ||\n|---|---|\n| Weighted loss float `Tensor`. If `reduction` is `NONE`, this has shape `[batch_size, d0, .. dN-1]`; otherwise, it is scalar. (Note `dN-1` because all loss functions reduce by 1 dimension, usually axis=-1.) ||\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Raises ||\n|--------------|---------------------------------------------|\n| `ValueError` | If the shape of `sample_weight` is invalid. |\n\n\u003cbr /\u003e"]]