Warning: This project is deprecated. TensorFlow Addons has stopped development,
The project will only be providing minimal maintenance releases until May 2024. See the full
announcement here or on
github.
tfa.losses.npairs_loss
Stay organized with collections
Save and categorize content based on your preferences.
Computes the npairs loss between y_true
and y_pred
.
@tf.function
tfa.losses.npairs_loss(
y_true: tfa.types.TensorLike
,
y_pred: tfa.types.TensorLike
) -> tf.Tensor
Npairs loss expects paired data where a pair is composed of samples from
the same labels and each pairs in the minibatch have different labels.
The loss takes each row of the pair-wise similarity matrix, y_pred
,
as logits and the remapped multi-class labels, y_true
, as labels.
The similarity matrix y_pred
between two embedding matrices a
and b
with shape [batch_size, hidden_size]
can be computed as follows:
a = tf.constant([[1, 2],
[3, 4],
[5, 6]], dtype=tf.float16)
b = tf.constant([[5, 9],
[3, 6],
[1, 8]], dtype=tf.float16)
y_pred = tf.matmul(a, b, transpose_a=False, transpose_b=True)
y_pred
<tf.Tensor: shape=(3, 3), dtype=float16, numpy=
array([[23., 15., 17.],
[51., 33., 35.],
[79., 51., 53.]], dtype=float16)>
<... Note: constants a & b have been used purely for
example purposes and have no significant value ...>
See: http://www.nec-labs.com/uploads/images/Department-Images/MediaAnalytics/papers/nips16_npairmetriclearning.pdf
Args |
y_true
|
1-D integer Tensor with shape [batch_size] of
multi-class labels.
|
y_pred
|
2-D float Tensor with shape [batch_size, batch_size] of
similarity matrix between embedding matrices.
|
Returns |
npairs_loss
|
float scalar.
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2023-05-25 UTC.
[null,null,["Last updated 2023-05-25 UTC."],[],[],null,["# tfa.losses.npairs_loss\n\n\u003cbr /\u003e\n\n|-----------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/tensorflow/addons/blob/v0.20.0/tensorflow_addons/losses/npairs.py#L23-L73) |\n\nComputes the npairs loss between `y_true` and `y_pred`. \n\n @tf.function\n tfa.losses.npairs_loss(\n y_true: ../../tfa/types/TensorLike,\n y_pred: ../../tfa/types/TensorLike\n ) -\u003e tf.Tensor\n\nNpairs loss expects paired data where a pair is composed of samples from\nthe same labels and each pairs in the minibatch have different labels.\nThe loss takes each row of the pair-wise similarity matrix, `y_pred`,\nas logits and the remapped multi-class labels, `y_true`, as labels.\n\nThe similarity matrix `y_pred` between two embedding matrices `a` and `b`\nwith shape `[batch_size, hidden_size]` can be computed as follows: \n\n a = tf.constant([[1, 2],\n [3, 4],\n [5, 6]], dtype=tf.float16)\n b = tf.constant([[5, 9],\n [3, 6],\n [1, 8]], dtype=tf.float16)\n y_pred = tf.matmul(a, b, transpose_a=False, transpose_b=True)\n y_pred\n \u003ctf.Tensor: shape=(3, 3), dtype=float16, numpy=\n array([[23., 15., 17.],\n [51., 33., 35.],\n [79., 51., 53.]], dtype=float16)\u003e\n\n\\\u003c... Note: constants a \\& b have been used purely for\nexample purposes and have no significant value ...\\\u003e\n\nSee: \u003chttp://www.nec-labs.com/uploads/images/Department-Images/MediaAnalytics/papers/nips16_npairmetriclearning.pdf\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|----------|-----------------------------------------------------------------------------------------------------------|\n| `y_true` | 1-D integer `Tensor` with shape `[batch_size]` of multi-class labels. |\n| `y_pred` | 2-D float `Tensor` with shape `[batch_size, batch_size]` of similarity matrix between embedding matrices. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|---------------|---------------|\n| `npairs_loss` | float scalar. |\n\n\u003cbr /\u003e"]]