View on TensorFlow.org | Run in Google Colab | View source on GitHub | Download notebook |
This tutorial demonstrates how to implement custom federated algorithms in TFF that require sending different data to different clients. You may already be familiar with tff.federated_broadcast
which sends a single server-placed value to all clients. This tutorial focuses on cases where different parts of a server-based value are sent to different clients. This may be useful for dividing up parts of a model across different clients in order to avoid sending the whole model to any single client.
Let's get started by importing both tensorflow
and tensorflow_federated
.
pip install --quiet --upgrade tensorflow-federated
import numpy as np
import tensorflow as tf
import tensorflow_federated as tff
Sending Different Values Based On Client Data
Consider the case where we have some server-placed list from which we want to send a few elements to each client based on some client-placed data. For example, a list of strings on the server, and on the clients, a comma-separated list of indices to download. We can implement that as follows:
list_of_strings_type = tff.TensorType(np.str_, [None])
# We only ever send exactly two values to each client. The number of keys per
# client must be a fixed number across all clients.
number_of_keys_per_client = 2
keys_type = tff.TensorType(np.int32, [number_of_keys_per_client])
get_size = tff.tensorflow.computation(lambda x: tf.size(x))
select_fn = tff.tensorflow.computation(lambda val, index: tf.gather(val, index))
client_data_type = np.str_
# A function from our client data to the indices of the values we'd like to
# select from the server.
@tff.tensorflow.computation(client_data_type)
def keys_for_client(client_string):
# We assume our client data is a single string consisting of exactly three
# comma-separated integers indicating which values to grab from the server.
split = tf.strings.split([client_string], sep=',')[0]
return tf.strings.to_number([split[0], split[1]], tf.int32)
@tff.tensorflow.computation(tff.SequenceType(np.str_))
def concatenate(values):
def reduce_fn(acc, item):
return tf.cond(tf.math.equal(acc, ''),
lambda: item,
lambda: tf.strings.join([acc, item], ','))
return values.reduce('', reduce_fn)
@tff.federated_computation(tff.FederatedType(list_of_strings_type, tff.SERVER), tff.FederatedType(client_data_type, tff.CLIENTS))
def broadcast_based_on_client_data(list_of_strings_at_server, client_data):
keys_at_clients = tff.federated_map(keys_for_client, client_data)
max_key = tff.federated_map(get_size, list_of_strings_at_server)
values_at_clients = tff.federated_select(keys_at_clients, max_key, list_of_strings_at_server, select_fn)
value_at_clients = tff.federated_map(concatenate, values_at_clients)
return value_at_clients
Then we can simulate our computation by providing the server-placed list of strings as well as string data for each client:
client_data = ['0,1', '1,2', '2,0']
broadcast_based_on_client_data(['a', 'b', 'c'], client_data)
[<tf.Tensor: shape=(), dtype=string, numpy=b'a,b'>, <tf.Tensor: shape=(), dtype=string, numpy=b'b,c'>, <tf.Tensor: shape=(), dtype=string, numpy=b'c,a'>]
Sending A Randomized Element To Each Client
Alternatively, it may be useful to send a random portion of the server data to each client. We can implement that by first generating a random key on each client and then following a similar selection process to the one used above:
@tff.tensorflow.computation(np.int32)
def get_random_key(max_key):
return tf.random.uniform(shape=[1], minval=0, maxval=max_key, dtype=tf.int32)
list_of_strings_type = tff.TensorType(np.str_, [None])
get_size = tff.tensorflow.computation(lambda x: tf.size(x))
select_fn = tff.tensorflow.computation(lambda val, index: tf.gather(val, index))
@tff.tensorflow.computation(tff.SequenceType(np.str_))
def get_last_element(sequence):
return sequence.reduce('', lambda _initial_state, val: val)
@tff.federated_computation(tff.FederatedType(list_of_strings_type, tff.SERVER))
def broadcast_random_element(list_of_strings_at_server):
max_key_at_server = tff.federated_map(get_size, list_of_strings_at_server)
max_key_at_clients = tff.federated_broadcast(max_key_at_server)
key_at_clients = tff.federated_map(get_random_key, max_key_at_clients)
random_string_sequence_at_clients = tff.federated_select(
key_at_clients, max_key_at_server, list_of_strings_at_server, select_fn)
# Even though we only passed in a single key, `federated_select` returns a
# sequence for each client. We only care about the last (and only) element.
random_string_at_clients = tff.federated_map(get_last_element, random_string_sequence_at_clients)
return random_string_at_clients
Since our broadcast_random_element
function doesn't take in any client-placed data, we have to configure the TFF Simulation Runtime with a default number of clients to use:
tff.backends.native.set_sync_local_cpp_execution_context(default_num_clients=3)
Then we can simulate the selection. We can change default_num_clients
above and the list of strings below to generate different results, or simply re-run the computation to generate different random outputs.
broadcast_random_element(tf.convert_to_tensor(['foo', 'bar', 'baz']))