View source on GitHub
|
Soft shrink function.
tfa.activations.softshrink(
x: tfa.types.TensorLike,
lower: tfa.types.Number = -0.5,
upper: tfa.types.Number = 0.5
) -> tf.Tensor
Computes soft shrink function:
\[ \mathrm{softshrink}(x) = \begin{cases} x - \mathrm{lower} & \text{if } x < \mathrm{lower} \\ x - \mathrm{upper} & \text{if } x > \mathrm{upper} \\ 0 & \text{otherwise} \end{cases}. \]
Usage:
x = tf.constant([-1.0, 0.0, 1.0])tfa.activations.softshrink(x)<tf.Tensor: shape=(3,), dtype=float32, numpy=array([-0.5, 0. , 0.5], dtype=float32)>
Args | |
|---|---|
x
|
A Tensor. Must be one of the following types:
bfloat16, float16, float32, float64.
|
lower
|
float, lower bound for setting values to zeros.
|
upper
|
float, upper bound for setting values to zeros.
|
Returns | |
|---|---|
A Tensor. Has the same type as x.
|
View source on GitHub