A LearningRateSchedule that uses cyclical schedule.
tfa.optimizers.CyclicalLearningRate(
initial_learning_rate: Union[FloatTensorLike, Callable],
maximal_learning_rate: Union[FloatTensorLike, Callable],
step_size: tfa.types.FloatTensorLike
,
scale_fn: Callable,
scale_mode: str = 'cycle',
name: str = 'CyclicalLearningRate'
)
Used in the notebooks
Args |
initial_learning_rate
|
A scalar float32 or float64 Tensor or
a Python number. The initial learning rate.
|
maximal_learning_rate
|
A scalar float32 or float64 Tensor or
a Python number. The maximum learning rate.
|
step_size
|
A scalar float32 or float64 Tensor or a
Python number. Step size denotes the number of training iterations it takes to get to maximal_learning_rate.
|
scale_fn
|
A function. Scheduling function applied in cycle
|
scale_mode
|
['cycle', 'iterations']. Mode to apply during cyclic
schedule
|
name
|
(Optional) Name for the operation.
|
Methods
from_config
@classmethod
from_config(
config
)
Instantiates a LearningRateSchedule
from its config.
Args |
config
|
Output of get_config() .
|
Returns |
A LearningRateSchedule instance.
|
get_config
View source
get_config()
__call__
View source
__call__(
step
)
Call self as a function.